Studying the structural and optical properties of Er3+ doped TiO2 powders synthesized by the sol-gel process

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Le, Kim Chi Tran, D. Cao, T. Nguyen, T. T. Van
{"title":"Studying the structural and optical properties of Er3+ doped TiO2 powders synthesized by the sol-gel process","authors":"T. Le, Kim Chi Tran, D. Cao, T. Nguyen, T. T. Van","doi":"10.1088/2043-6262/acebd8","DOIUrl":null,"url":null,"abstract":"A series of TiO2:xEr powders (with x from 0% to 1% at.) was synthesised by a simple sol–gel process. The structural and optical properties were studied in detail using diffusion reflection spectroscopy, x-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive x-ray spectroscopy, to systematically determine the band edge, morphology, and structural properties of both undoped and Er-doped TiO2 samples. Notably, the introduction of Er dopants in the TiO2 matrix results in a decrease in both the band gap and crystallite size as well as the anatase phase of host matrix TiO2 remained in the anatase phase even at 800 °C. The heat treatment temperature has an insignificant effect on the green/red emission ratio of Er ions. However, this ratio strongly depends on excitation wavelengths corresponding to down-conversion and up-conversion processes. The colour emission of TiO2:Er is easily tunable from green to yellow under different excitations. The emission mechanism of TiO2:Er is proposed based on spectroscopy techniques. These findings reveal that the TiO2:Er powders are potential materials for labelling and photocatalyst applications.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/acebd8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A series of TiO2:xEr powders (with x from 0% to 1% at.) was synthesised by a simple sol–gel process. The structural and optical properties were studied in detail using diffusion reflection spectroscopy, x-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive x-ray spectroscopy, to systematically determine the band edge, morphology, and structural properties of both undoped and Er-doped TiO2 samples. Notably, the introduction of Er dopants in the TiO2 matrix results in a decrease in both the band gap and crystallite size as well as the anatase phase of host matrix TiO2 remained in the anatase phase even at 800 °C. The heat treatment temperature has an insignificant effect on the green/red emission ratio of Er ions. However, this ratio strongly depends on excitation wavelengths corresponding to down-conversion and up-conversion processes. The colour emission of TiO2:Er is easily tunable from green to yellow under different excitations. The emission mechanism of TiO2:Er is proposed based on spectroscopy techniques. These findings reveal that the TiO2:Er powders are potential materials for labelling and photocatalyst applications.
溶胶-凝胶法制备掺Er3+TiO2粉体的结构与光学性能研究
通过简单的溶胶-凝胶工艺合成了一系列TiO2:xEr粉末(x为0%-1%at.)。使用扩散反射光谱、x射线衍射、拉曼光谱、高分辨率透射电子显微镜和能量色散x射线光谱对结构和光学性能进行了详细研究,以系统地确定未掺杂和掺铒TiO2样品的带边、形态和结构性能。值得注意的是,在TiO2基体中引入Er掺杂剂导致带隙和晶粒尺寸减小,并且即使在800°C下,主体基体TiO2的锐钛矿相仍保持在锐钛矿相中。热处理温度对Er离子的绿/红发射比影响不大。然而,该比率强烈地取决于对应于下转换和上转换过程的激发波长。在不同的激发下,TiO2:Er的颜色发射很容易从绿色调谐到黄色。基于光谱学技术,提出了TiO2:Er的发射机理。这些发现表明,TiO2:Er粉末是标记和光催化剂应用的潜在材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
4.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信