Modified ballistic–diffusive equations for obtaining phonon mean free path spectrum from ballistic thermal resistance: I. Introduction and validation of the equations
{"title":"Modified ballistic–diffusive equations for obtaining phonon mean free path spectrum from ballistic thermal resistance: I. Introduction and validation of the equations","authors":"O. Kwon, Geoff Wehmeyer, C. Dames","doi":"10.1080/15567265.2019.1619885","DOIUrl":null,"url":null,"abstract":"ABSTRACT Phonon mean free path (MFP) spectra are essential for the accurate prediction and utilization of the classical size effect. Rebuilding an MFP spectrum from experimental data remains challenging. It requires solving the thermal transport phenomenon of a heat source of a given shape across the entire size range. Herein, to do this for a heat source embedded in an infinite medium, we derive a new set of modified ballistic–diffusive equations by analyzing the cause of the erroneous results observed in a steady-state solution of the original ballistic-diffusive equations. We demonstrate their ease and accuracy by obtaining the effective thermal conductivity for a spherical nanoparticle embedded in an infinite medium in an explicit closed-form and comparing it with that obtained by the Boltzmann transport equation (differences estimated as <3%).","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"259 - 273"},"PeriodicalIF":2.7000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1619885","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1619885","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Phonon mean free path (MFP) spectra are essential for the accurate prediction and utilization of the classical size effect. Rebuilding an MFP spectrum from experimental data remains challenging. It requires solving the thermal transport phenomenon of a heat source of a given shape across the entire size range. Herein, to do this for a heat source embedded in an infinite medium, we derive a new set of modified ballistic–diffusive equations by analyzing the cause of the erroneous results observed in a steady-state solution of the original ballistic-diffusive equations. We demonstrate their ease and accuracy by obtaining the effective thermal conductivity for a spherical nanoparticle embedded in an infinite medium in an explicit closed-form and comparing it with that obtained by the Boltzmann transport equation (differences estimated as <3%).
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.