{"title":"Points rationnels dans leur fibre : compléments à un théorème de Poonen","authors":"Laurent Moret-Bailly","doi":"10.5802/jtnb.1130","DOIUrl":null,"url":null,"abstract":"Soient $k$ un corps et $f:X\\to Y$ un morphisme surjectif de $k$-varietes, avec $\\dim Y=d\\geq1$. On precise des resultats de Poonen en montrant qu'il existe des sous-varietes $X'\\subset X$ et $Y'=f(X')\\subset Y$, de dimension $d-1$, telles que le morphisme induit $f':X'\\to Y'$ soit radiciel. Si $f$ est lisse, on peut exiger que $f'$ soit un isomorphisme, avec $Y'$ lisse si $Y$ l'est. Si $X$ est lisse, il existe un point ferme $x$ de $X$ ayant le meme corps residuel $k'$ que $f(x)$, $k'$ etant de plus separable sur $k$. Enfin, on donne des analogues arithmetiques. Let $k$ be a field and let $f:X\\to Y$ be a surjective morphism of $k$-varieties with $\\dim Y=d\\geq1$. Improving on results of Poonen, we prove that there are subvarieties $X'\\subset X$ and $Y'=f(X')\\subset Y$, of dimension $d-1$, such that the induced morphism $f':X'\\to Y'$ is purely inseparable. If $f$ is smooth, $f'$ can be taken to be an isomorphism, with $Y'$ smooth if $Y$ is. If $X$ is smooth, there is a closed point $x\\in X$ having the same residue field $k'$ as $f(x)$, with $k'$ separable over $k$. We also prove arithmetic analogues.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Soient $k$ un corps et $f:X\to Y$ un morphisme surjectif de $k$-varietes, avec $\dim Y=d\geq1$. On precise des resultats de Poonen en montrant qu'il existe des sous-varietes $X'\subset X$ et $Y'=f(X')\subset Y$, de dimension $d-1$, telles que le morphisme induit $f':X'\to Y'$ soit radiciel. Si $f$ est lisse, on peut exiger que $f'$ soit un isomorphisme, avec $Y'$ lisse si $Y$ l'est. Si $X$ est lisse, il existe un point ferme $x$ de $X$ ayant le meme corps residuel $k'$ que $f(x)$, $k'$ etant de plus separable sur $k$. Enfin, on donne des analogues arithmetiques. Let $k$ be a field and let $f:X\to Y$ be a surjective morphism of $k$-varieties with $\dim Y=d\geq1$. Improving on results of Poonen, we prove that there are subvarieties $X'\subset X$ and $Y'=f(X')\subset Y$, of dimension $d-1$, such that the induced morphism $f':X'\to Y'$ is purely inseparable. If $f$ is smooth, $f'$ can be taken to be an isomorphism, with $Y'$ smooth if $Y$ is. If $X$ is smooth, there is a closed point $x\in X$ having the same residue field $k'$ as $f(x)$, with $k'$ separable over $k$. We also prove arithmetic analogues.