A Priori Estimates for the Derivative Nonlinear Schrödinger Equation

Pub Date : 2020-07-26 DOI:10.1619/fesi.65.329
Friedrich Klaus, R. Schippa
{"title":"A Priori Estimates for the Derivative Nonlinear Schrödinger Equation","authors":"Friedrich Klaus, R. Schippa","doi":"10.1619/fesi.65.329","DOIUrl":null,"url":null,"abstract":"We prove low regularity a priori estimates for the derivative nonlinear Schrodinger equation in Besov spaces with positive regularity index conditional upon small $L^2$ -norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip–Visan–Zhang for completely integrable PDE. This makes it possible to derive low regularity conservation laws from the perturbation determinant.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.65.329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We prove low regularity a priori estimates for the derivative nonlinear Schrodinger equation in Besov spaces with positive regularity index conditional upon small $L^2$ -norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip–Visan–Zhang for completely integrable PDE. This makes it possible to derive low regularity conservation laws from the perturbation determinant.
分享
查看原文
导数非线性Schrödinger方程的先验估计
我们证明了Besov空间中导数非线性薛定谔方程的低正则性先验估计,该方程的正正则性指数以小$L^2$-范数为条件。这涵盖了整个亚临界范围。对于完全可积PDE,我们使用Killip–Visan–Zhang引入的扰动行列式的幂级数展开。这使得从扰动行列式中导出低正则守恒定律成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信