{"title":"Small data global regularity and scattering for 3D Ericksen–Leslie compressible hyperbolic liquid crystal model","authors":"Jiaxi Huang, Ning Jiang, Yi-Long Luo, Lifeng Zhao","doi":"10.1142/S0219891622500199","DOIUrl":null,"url":null,"abstract":"We study the Ericksen–Leslie hyperbolic system for compressible liquid crystal model in three spatial dimensions. Global regularity and scattering for small and smooth initial data near equilibrium are proved for the case that the system is a nonlinear coupling of compressible Navier–Stokes equations with wave map to [Formula: see text]. The main strategy relies on an interplay between the control of high order energies and decay estimates, which is based on the idea inspired by the method of space-time resonances. Unlike the incompressible model, the different behaviors of the decay properties of the density and velocity field for compressible fluids at different frequencies play a key role, which is a particular feature of compressible model.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891622500199","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
We study the Ericksen–Leslie hyperbolic system for compressible liquid crystal model in three spatial dimensions. Global regularity and scattering for small and smooth initial data near equilibrium are proved for the case that the system is a nonlinear coupling of compressible Navier–Stokes equations with wave map to [Formula: see text]. The main strategy relies on an interplay between the control of high order energies and decay estimates, which is based on the idea inspired by the method of space-time resonances. Unlike the incompressible model, the different behaviors of the decay properties of the density and velocity field for compressible fluids at different frequencies play a key role, which is a particular feature of compressible model.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.