Antonio Ricardo Lunardi, Francisco Rodrigues Lima Junior
{"title":"Comparison of artificial neural networks learning methods to evaluate supply chain performance","authors":"Antonio Ricardo Lunardi, Francisco Rodrigues Lima Junior","doi":"10.1590/1806-9649-2021v28e5450","DOIUrl":null,"url":null,"abstract":"Abstract: The supply chain performance evaluation is a critical activity to continuously improve operations. Literature presents several performance evaluation systems based on multi-criteria methods and artificial intelligence. Among them, the systems based on artificial neural networks (ANN) excel due to their capacity of modeling non-linear relationships between metrics and allowing adaptations to a specific environment by means of historical performance data. These systems’ accuracy depend directly on the adopted training algorithm, and no studies have been found that assess the efficiency of these algorithms when applied to supply chain performance evaluation. In this context, the present study evaluates four ANNs learning methods in order to investigate which one is the most adequate to deal with supply chain evaluation. The algorithms tested were Gradient Descendent Momentum, Levenberg-Marquardt, Quasi-Newton and Scale Conjugate Gradient. The performance metrics were extracted from SCOR®, which is a reference model used worldwide. The random sub-sampling cross-validation method was adopted to find the most adequate topological configuration for each model. A set of 80 topologies was implemented using MATLAB®. The prediction accuracy evaluation was based on the mean square error. For the four level 1 metrics considered, the Levenberg-Marquardt algorithm provided the most precise results. The results of correlation analysis and hypothesis tests reinforce the accuracy of the proposed models. Furthermore, the proposed computational models reached a prediction accuracy higher than previous approaches.","PeriodicalId":35415,"journal":{"name":"Gestao e Producao","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gestao e Producao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9649-2021v28e5450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract: The supply chain performance evaluation is a critical activity to continuously improve operations. Literature presents several performance evaluation systems based on multi-criteria methods and artificial intelligence. Among them, the systems based on artificial neural networks (ANN) excel due to their capacity of modeling non-linear relationships between metrics and allowing adaptations to a specific environment by means of historical performance data. These systems’ accuracy depend directly on the adopted training algorithm, and no studies have been found that assess the efficiency of these algorithms when applied to supply chain performance evaluation. In this context, the present study evaluates four ANNs learning methods in order to investigate which one is the most adequate to deal with supply chain evaluation. The algorithms tested were Gradient Descendent Momentum, Levenberg-Marquardt, Quasi-Newton and Scale Conjugate Gradient. The performance metrics were extracted from SCOR®, which is a reference model used worldwide. The random sub-sampling cross-validation method was adopted to find the most adequate topological configuration for each model. A set of 80 topologies was implemented using MATLAB®. The prediction accuracy evaluation was based on the mean square error. For the four level 1 metrics considered, the Levenberg-Marquardt algorithm provided the most precise results. The results of correlation analysis and hypothesis tests reinforce the accuracy of the proposed models. Furthermore, the proposed computational models reached a prediction accuracy higher than previous approaches.
Gestao e ProducaoEngineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
0.00%
发文量
23
审稿时长
44 weeks
期刊介绍:
Gestão & Produção is a journal published four times a year year (March, June, September and December) by the Departamento de Engenharia de Produção (DEP) of Universidade Federal de São Carlos (UFSCar). The first issue of Gestão & Produção was published in April, 1994. Actually, G&P was result of experience of professors of DEP/UFSCar in editing, in the beginning, "Cadernos DEP" in the 1980s, followed by "Cadernos de Engenharia de Produção". The last three issues of "Cadernos de Engenharia de Produção" were a test previous to the launch of Gestão & Produção because most of the journal characteristics were already established, like regularity.