Inversion formula and uncertainty inequalities for the Weinstein-type Segal–Bargmann transform

IF 0.7 3区 数学 Q2 MATHEMATICS
F. Soltani, Hanen Saadi
{"title":"Inversion formula and uncertainty inequalities for the Weinstein-type Segal–Bargmann transform","authors":"F. Soltani, Hanen Saadi","doi":"10.1080/10652469.2023.2176488","DOIUrl":null,"url":null,"abstract":"In 1961, Bargmann introduced the classical Segal–Bargmann transform and in 1984, Cholewinsky introduced the generalized Segal–Bargmann transform. These two transforms are the aim of many works, and have many applications in mathematics. In this paper, we introduce the Weinstein-type Segal–Bargmann transform ; and we prove for this transform Plancherel and inversion formulas. Next, we give a relation between the transform and the Weinstein transform in . As applications, we establish a local-type uncertainty inequalities (two versions) and a dispersion inequality for .","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"619 - 634"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2023.2176488","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In 1961, Bargmann introduced the classical Segal–Bargmann transform and in 1984, Cholewinsky introduced the generalized Segal–Bargmann transform. These two transforms are the aim of many works, and have many applications in mathematics. In this paper, we introduce the Weinstein-type Segal–Bargmann transform ; and we prove for this transform Plancherel and inversion formulas. Next, we give a relation between the transform and the Weinstein transform in . As applications, we establish a local-type uncertainty inequalities (two versions) and a dispersion inequality for .
weinstein型Segal-Bargmann变换的反演公式和不确定性不等式
1961年,Bargmann引入了经典的Segal–Bargmann变换,1984年,Cholewinsky引入了广义Segal–Balgmann变换。这两种变换是许多著作的目的,在数学中有许多应用。在本文中,我们引入了Weinstein型Segal–Bargmann变换;并证明了该变换的Plancherel和反演公式。接下来,我们给出了中的变换和Weinstein变换之间的关系。作为应用,我们建立了的局部型不确定性不等式(两个版本)和离散不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信