{"title":"A Classification of Closed Hypocycloids and Epicycloids","authors":"Zarema S. Seidametova, V. Temnenko","doi":"10.1080/0025570X.2023.2167397","DOIUrl":null,"url":null,"abstract":"Summary The paper describes a classification of closed epicycloids and hypocycloids into three classes: “odd/odd,” “even/odd,” “odd/even.” A subset of “perfect” epicycloids and hypocycloids that do not have self-intersection points has been identified. A new composite geometric object is constructed: the Euler Ring of Rings, consisting of a perfect epicycloid and a perfect hypocycloid with the same indices.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2167397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Summary The paper describes a classification of closed epicycloids and hypocycloids into three classes: “odd/odd,” “even/odd,” “odd/even.” A subset of “perfect” epicycloids and hypocycloids that do not have self-intersection points has been identified. A new composite geometric object is constructed: the Euler Ring of Rings, consisting of a perfect epicycloid and a perfect hypocycloid with the same indices.