{"title":"Involvement of poly(ADP-ribose)ylation (PARylation) in the regulation of antioxidant defense system in Arabidopsis thaliana under salt stress","authors":"Rengin Özgür Uzilday","doi":"10.55730/1300-008x.2713","DOIUrl":null,"url":null,"abstract":": Posttranslational modifications (PTM) are one of the first responses of plants to environmental stress and involve changing the location and activity of proteins in the cell. Addition of poly(ADP-ribose) (PAR) to proteins, poly(ADP-ribose)ylation (PARylation), is a posttranslational modification resulting from the binding of ADP-ribose from NAD + to target proteins by PAR polymerases (PARP). PARylation is involved in many physiological events in plants including abiotic and biotic stress response. The aim of this work was to understand involvement of PARylation in inducing enzymatic antioxidant defence and alternative electron sinks in response to salinity. For this purpose A. thaliana plants were treated with 3-aminobenzamide (3-AB), which is a PARP inhibitor, in the presence of 100 mM NaCl. The 3-AB treatment induced plant fresh weight under control and salinity conditions. Moreover, 100 mM NaCl + 3-AB treated plants had lower lipid peroxidation when compared to 100 mM NaCl group indicating mitigation of oxidative stress. This oxidative stress mitigation was achieved by significantly induced superoxide dismutase (SOD) activity and transcriptional activation of genes related to ROS scavenging such as MSD1 , CAT1 , APX1 , GR1 . On the other hand, transcriptional regulation of mitochondrial alternative oxidase (AOX) pathway was also induced with 3-AB treatment ( AOX1a and AOX1d ) under salt stress indicating that ROS avoidance mechanisms are also activated along with ROS scavenging. However, in contrast to AOX, chloroplastic plastid terminal oxidase pathway was not induced with 3-AB.","PeriodicalId":23369,"journal":{"name":"Turkish Journal of Botany","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.55730/1300-008x.2713","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
: Posttranslational modifications (PTM) are one of the first responses of plants to environmental stress and involve changing the location and activity of proteins in the cell. Addition of poly(ADP-ribose) (PAR) to proteins, poly(ADP-ribose)ylation (PARylation), is a posttranslational modification resulting from the binding of ADP-ribose from NAD + to target proteins by PAR polymerases (PARP). PARylation is involved in many physiological events in plants including abiotic and biotic stress response. The aim of this work was to understand involvement of PARylation in inducing enzymatic antioxidant defence and alternative electron sinks in response to salinity. For this purpose A. thaliana plants were treated with 3-aminobenzamide (3-AB), which is a PARP inhibitor, in the presence of 100 mM NaCl. The 3-AB treatment induced plant fresh weight under control and salinity conditions. Moreover, 100 mM NaCl + 3-AB treated plants had lower lipid peroxidation when compared to 100 mM NaCl group indicating mitigation of oxidative stress. This oxidative stress mitigation was achieved by significantly induced superoxide dismutase (SOD) activity and transcriptional activation of genes related to ROS scavenging such as MSD1 , CAT1 , APX1 , GR1 . On the other hand, transcriptional regulation of mitochondrial alternative oxidase (AOX) pathway was also induced with 3-AB treatment ( AOX1a and AOX1d ) under salt stress indicating that ROS avoidance mechanisms are also activated along with ROS scavenging. However, in contrast to AOX, chloroplastic plastid terminal oxidase pathway was not induced with 3-AB.
期刊介绍:
The Turkish Journal of Botany is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts manuscripts (in English) covering all areas of plant biology (including genetics, evolution, systematics, structure, function, development, diversity, conservation biology, biogeography, paleobotany, ontogeny, functional morphology, ecology, reproductive biology, and pollination biology), all levels of organisation (molecular to ecosystem), and all plant groups and allied organisms (algae, fungi, and lichens). Authors are required to frame their research questions and discuss their results in terms of major questions in plant biology. In general, papers that are too narrowly focused, purely descriptive, or broad surveys, or that contain only preliminary data or natural history, will not be considered (*).
The following types of article will be considered:
1. Research articles: Original research in various fields of botany will be evaluated as research articles.
2. Research notes: These include articles such as preliminary notes on a study or manuscripts on the morphological, anatomical, cytological, physiological, biochemical, and other properties of plant, algae, lichen and fungi species.
3. Reviews: Reviews of recent developments, improvements, discoveries, and ideas in various fields of botany.
4. Letters to the editor: These include opinions, comments relating to the publishing policy of the Turkish Journal of Botany, news, and suggestions. Letters should not exceed one journal page.
(*) 1. Raw floristic lists (of algae, lichens, fungi, or plants), species descriptions, chorological studies, and plant sociology studies without any additional independent approaches.
2. Comparative morphology and anatomy studies (that do not cover a family, tribe, subtribe, genus, subgenus, section, subsection, or species complexes with taxonomical problems) without one or more independent additional approaches such as phylogenetical, micromorphological, chromosomal and anatomical analyses.
3. Revisions of family, tribe, genus, subgenus, section, subsection, or species complexes without any original outputs such as taxonomical status changes, IUCN categories, and phenological and ecological analyses.
4. New taxa of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 3 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.
5. New taxa of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 5 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.