On a Linear Combination of Zagreb Indices

IF 1 Q1 MATHEMATICS
A. Albalahi
{"title":"On a Linear Combination of Zagreb Indices","authors":"A. Albalahi","doi":"10.47443/dml.2023.029","DOIUrl":null,"url":null,"abstract":"The modified first Zagreb connection index of a triangle-free and quadrangle-free graph G is equal to 2 M 2 ( G ) − M 1 ( G ) , where M 2 ( G ) and M 1 ( G ) are the well-known second and first Zagreb indices of G , respectively. This paper involves the study of the linear combination 2 M 2 ( G ) − M 1 ( G ) of M 2 ( G ) and M 1 ( G ) when G is a connected graph of a given order and cyclomatic number. More precisely, graphs having the minimum value of the graph invariant 2 M 2 − M 1 are determined from the class of all connected graphs of order n and cyclomatic number c y , when c y ≥ 1 and n ≥ 2( c y − 1) .","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The modified first Zagreb connection index of a triangle-free and quadrangle-free graph G is equal to 2 M 2 ( G ) − M 1 ( G ) , where M 2 ( G ) and M 1 ( G ) are the well-known second and first Zagreb indices of G , respectively. This paper involves the study of the linear combination 2 M 2 ( G ) − M 1 ( G ) of M 2 ( G ) and M 1 ( G ) when G is a connected graph of a given order and cyclomatic number. More precisely, graphs having the minimum value of the graph invariant 2 M 2 − M 1 are determined from the class of all connected graphs of order n and cyclomatic number c y , when c y ≥ 1 and n ≥ 2( c y − 1) .
关于Zagreb指数的线性组合
无三角形和无四边形图G的修正的第一Zagreb连接指数等于2M2(G)−M1(G),其中M2(G)和M 1(G)分别是众所周知的G的第二和第一Zagre布指数。本文研究了当G是给定阶和圈数的连通图时,M2(G)与M1(G)的线性组合2M2(G)−M 1(G)。更确切地说,当cy≥1且n≥2(cy−1)时,从n阶和圈数为cy的所有连通图的类中确定具有图不变量2M 2−M1的最小值的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信