Compactness in Lipschitz spaces and around

IF 0.7 3区 数学 Q2 MATHEMATICS
J. Gulgowski, P. Kasprzak, Piotr Ma'ckowiak
{"title":"Compactness in Lipschitz spaces and around","authors":"J. Gulgowski, P. Kasprzak, Piotr Ma'ckowiak","doi":"10.4064/sm221020-16-3","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to characterize (pre)compactness in the spaces of Lipschitz/H\\\"older continuous mappings acting from a compact metric space to a normed space. To this end some extensions and generalizations of already existing compactness criteria for the spaces of bounded and continuous mappings with values in normed spaces needed to be established. Those auxiliary results, which are interesting on their own since they use a concept of equicontinuity not seen in the literature, are based on an abstract compactness criterion related to the recently introduced notion of an equinormed set.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm221020-16-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the paper is to characterize (pre)compactness in the spaces of Lipschitz/H\"older continuous mappings acting from a compact metric space to a normed space. To this end some extensions and generalizations of already existing compactness criteria for the spaces of bounded and continuous mappings with values in normed spaces needed to be established. Those auxiliary results, which are interesting on their own since they use a concept of equicontinuity not seen in the literature, are based on an abstract compactness criterion related to the recently introduced notion of an equinormed set.
Lipschitz空间及其周围的紧性
本文的目的是刻画Lipschitz/H空间中的(预)紧性\从紧致度量空间到赋范空间的较老的连续映射。为此,需要对赋范空间中有值的有界和连续映射的空间的现有紧致性标准进行一些扩展和推广。这些辅助结果本身就很有趣,因为它们使用了在L中看不到的等连续性概念ature是基于与最近引入的二分形式集合的概念相关的抽象紧致性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信