Thin-ended clusters in percolation in $\mathbb{H}^d$

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
J. Czajkowski
{"title":"Thin-ended clusters in percolation in \n$\\mathbb{H}^d$","authors":"J. Czajkowski","doi":"10.1017/apr.2022.43","DOIUrl":null,"url":null,"abstract":"Abstract Consider Bernoulli bond percolation on a graph nicely embedded in hyperbolic space \n$\\mathbb{H}^d$\n in such a way that it admits a transitive action by isometries of \n$\\mathbb{H}^d$\n . Let \n$p_{\\text{a}}$\n be the supremum of all percolation parameters such that no point at infinity of \n$\\mathbb{H}^d$\n lies in the boundary of the cluster of a fixed vertex with positive probability. Then for any parameter \n$p < p_{\\text{a}}$\n , almost surely every percolation cluster is thin-ended, i.e. has only one-point boundaries of ends.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":"55 1","pages":"581 - 610"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.43","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Consider Bernoulli bond percolation on a graph nicely embedded in hyperbolic space $\mathbb{H}^d$ in such a way that it admits a transitive action by isometries of $\mathbb{H}^d$ . Let $p_{\text{a}}$ be the supremum of all percolation parameters such that no point at infinity of $\mathbb{H}^d$ lies in the boundary of the cluster of a fixed vertex with positive probability. Then for any parameter $p < p_{\text{a}}$ , almost surely every percolation cluster is thin-ended, i.e. has only one-point boundaries of ends.
$\mathbb{H}^d中渗流中的细端团簇$
摘要考虑一个很好地嵌入双曲空间$\mathbb{H}^d$中的图上的伯努利键渗流,它允许$\mathbb{H}^d$的等距的传递作用。设$p_{\text{a}}$是所有渗流参数的上确界,使得$\mathbb{H}^d$的无穷远点不在具有正概率的固定顶点的簇的边界上。那么,对于任何参数$p<p_{\text{a}}$,几乎可以肯定的是,每个渗流簇都是细端的,即只有一个端点的点边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Probability
Advances in Applied Probability 数学-统计学与概率论
CiteScore
2.00
自引率
0.00%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信