{"title":"Flow-induced Vibrations of a Horizontal Elastic Band Plate Submerged in Fluid of Finite Depth","authors":"K. Szmidt, B. Hedzielski","doi":"10.1515/heem-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with forced vibrations of a horizontal thin elastic plate submerged in a semi-infinite layer of fluid of constant depth. The pressure load on this plate is induced by water waves arriving at the plate. This load is accompanied by pressure resulting from the motion of the plate. The plate and fluid motions depend on boundary conditions, and, in particular, the pressure load depends on the width of the gap between the plate and the bottom. In theoretical description of the phenomenon, we deal with a coupled problem of hydrodynamics in which the plate and fluid motions are coupled through boundary conditions at the plate surfaces. The main attention is focused on transient solutions of the problem, which correspond to fluid (and plate) motion starting from rest. In formulation of this problem, a linear theory of small deflections of the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation is constructed in a doubly connected fluid domain. With respect to the initial value problem considered, we confine our attention to a finite fluid domain. For a finite elapse of time, measured from the starting point, the solution in the finite fluid area mimics a solution within an infinite domain, inherent for wave propagation problems. Because of the complicated structure of boundary conditions of the coupled problem considered, the fluid domain is divided into sub-domains of simple geometry, and the solutions of the problem equations are constructed separately in each of these domains. Numerical experiments have been conducted to illustrate the formulation developed in this paper.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":"66 1","pages":"101 - 130"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper deals with forced vibrations of a horizontal thin elastic plate submerged in a semi-infinite layer of fluid of constant depth. The pressure load on this plate is induced by water waves arriving at the plate. This load is accompanied by pressure resulting from the motion of the plate. The plate and fluid motions depend on boundary conditions, and, in particular, the pressure load depends on the width of the gap between the plate and the bottom. In theoretical description of the phenomenon, we deal with a coupled problem of hydrodynamics in which the plate and fluid motions are coupled through boundary conditions at the plate surfaces. The main attention is focused on transient solutions of the problem, which correspond to fluid (and plate) motion starting from rest. In formulation of this problem, a linear theory of small deflections of the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation is constructed in a doubly connected fluid domain. With respect to the initial value problem considered, we confine our attention to a finite fluid domain. For a finite elapse of time, measured from the starting point, the solution in the finite fluid area mimics a solution within an infinite domain, inherent for wave propagation problems. Because of the complicated structure of boundary conditions of the coupled problem considered, the fluid domain is divided into sub-domains of simple geometry, and the solutions of the problem equations are constructed separately in each of these domains. Numerical experiments have been conducted to illustrate the formulation developed in this paper.
期刊介绍:
Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.