{"title":"Well-posedness and blow-up for an inhomogeneous semilinear parabolic equation","authors":"M. Majdoub","doi":"10.7153/DEA-2021-13-06","DOIUrl":null,"url":null,"abstract":"We consider the large-time behavior of sign-changing solutions of the inhomogeneous equation $u_t-\\Delta u=|x|^\\alpha |u|^{p}+\\zeta(t)\\,{\\mathbf w}(x)$ in $(0,\\infty)\\times{\\mathbb{R}}^N$, where $N\\geq 3$, $p>1$, $\\alpha>-2$, $\\zeta, {\\mathbf w}$ are continuous functions such that $\\zeta(t)\\sim t^\\sigma$ as $t\\to 0$, $\\zeta(t)\\sim t^m$ as $t\\to\\infty$ . We obtain local existence for $\\sigma>-1$. We also show the following: \n$-$ If $m\\leq 0$, $p 0$, then all solutions blow up in finite time; \n$-$ If $m> 0$, $p>1$ and $\\int_{\\mathbb{R}^N}{\\mathbf w}(x)dx>0$, then all solutions blow up in finite time. \nThe main novelty in this paper is that blow up depends on the behavior of $\\zeta$ at infinity.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
We consider the large-time behavior of sign-changing solutions of the inhomogeneous equation $u_t-\Delta u=|x|^\alpha |u|^{p}+\zeta(t)\,{\mathbf w}(x)$ in $(0,\infty)\times{\mathbb{R}}^N$, where $N\geq 3$, $p>1$, $\alpha>-2$, $\zeta, {\mathbf w}$ are continuous functions such that $\zeta(t)\sim t^\sigma$ as $t\to 0$, $\zeta(t)\sim t^m$ as $t\to\infty$ . We obtain local existence for $\sigma>-1$. We also show the following:
$-$ If $m\leq 0$, $p 0$, then all solutions blow up in finite time;
$-$ If $m> 0$, $p>1$ and $\int_{\mathbb{R}^N}{\mathbf w}(x)dx>0$, then all solutions blow up in finite time.
The main novelty in this paper is that blow up depends on the behavior of $\zeta$ at infinity.