Gunilla Öberg, Alice Campbell, Joanne Fox, Marcia Graves, Tara Ivanochko, Linda Matsuchi, Isobel Mouat, Ashley Welsh
{"title":"Teaching Science as a Process, Not a Set of Facts","authors":"Gunilla Öberg, Alice Campbell, Joanne Fox, Marcia Graves, Tara Ivanochko, Linda Matsuchi, Isobel Mouat, Ashley Welsh","doi":"10.1007/s11191-021-00253-8","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread misperception of science as a deliverer of irrefutable facts, rather than a deliberative process, is undermining public trust in science. Science education therefore needs to better support students’ understanding of the central role that disputes play in the scientific process. Successfully incorporating scientific disputes into science education is, however, challenging. The aim of this paper is to identify course components and design features that develop undergraduate students’ abilities to write a logically coherent argument that is supported by evidence. First, we assessed student essays from a course that had gone through a major revision aimed at strengthening students’ reasoning skills. When comparing pre- and post-revision essays, we found substantial, and significant, improvements across the assessment criteria. We then elicited oral and written feedback from instructors who taught the course pre- and post-revision. We identified several changes that instructors felt most impacted students’ reasoning skills, most importantly: streamlining of learning outcomes and course content emphasizing argumentation skills; stronger scaffolding and better utilized peer review; and more detailed rubrics that specifically reference learning outcomes and course content. The study illustrates the power of iterative course revisions that incorporate findings from published research and instructors’ reflections on teaching practices as a way to strengthen student learning.</p></div>","PeriodicalId":56374,"journal":{"name":"Science & Education","volume":"31 3","pages":"787 - 817"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11191-021-00253-8.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Education","FirstCategoryId":"95","ListUrlMain":"https://link.springer.com/article/10.1007/s11191-021-00253-8","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 6
Abstract
The widespread misperception of science as a deliverer of irrefutable facts, rather than a deliberative process, is undermining public trust in science. Science education therefore needs to better support students’ understanding of the central role that disputes play in the scientific process. Successfully incorporating scientific disputes into science education is, however, challenging. The aim of this paper is to identify course components and design features that develop undergraduate students’ abilities to write a logically coherent argument that is supported by evidence. First, we assessed student essays from a course that had gone through a major revision aimed at strengthening students’ reasoning skills. When comparing pre- and post-revision essays, we found substantial, and significant, improvements across the assessment criteria. We then elicited oral and written feedback from instructors who taught the course pre- and post-revision. We identified several changes that instructors felt most impacted students’ reasoning skills, most importantly: streamlining of learning outcomes and course content emphasizing argumentation skills; stronger scaffolding and better utilized peer review; and more detailed rubrics that specifically reference learning outcomes and course content. The study illustrates the power of iterative course revisions that incorporate findings from published research and instructors’ reflections on teaching practices as a way to strengthen student learning.
期刊介绍:
Science & Education publishes research informed by the history, philosophy and sociology of science and mathematics that seeks to promote better teaching, learning, and curricula in science and mathematics. More particularly Science & Education promotes: The utilization of historical, philosophical and sociological scholarship to clarify and deal with the many intellectual issues facing contemporary science and mathematics education. Collaboration between the communities of scientists, mathematicians, historians, philosophers, cognitive psychologists, sociologists, science and mathematics educators, and school and college teachers. An understanding of the philosophical, cultural, economic, religious, psychological and ethical dimensions of modern science and the interplay of these factors in the history of science. The inclusion of appropriate history and philosophy of science and mathematics courses in science and mathematics teacher-education programmes. The dissemination of accounts of lessons, units of work, and programmes in science and mathematics, at all levels, that have successfully utilized history and philosophy. Discussion of the philosophy and purposes of science and mathematics education, and their place in, and contribution to, the intellectual and ethical development of individuals and cultures.