{"title":"Pion-mediated Cooper pairing of neutrons: beyond the bare vertex approximation","authors":"Hao Zhu, Guo-Zhu Liu","doi":"10.1088/1361-6471/acdfec","DOIUrl":null,"url":null,"abstract":"\n In some quantum many particle systems, the fermions could form Cooper pairs by exchanging intermediate bosons. This then drives a superconducting phase transition or a superfluid transition. Such transitions should be theoretically investigated by using proper non-perturbative methods. Here we take the neutron superfluid transition as an example and study the Cooper pairing of neutrons mediated by neutral $\\pi$-mesons in the low density region of a neutron matter. We perform a non-perturbative analysis of the neutron-meson coupling and compute the pairing gap $\\Delta_{s}$, the critical density $\\rho_{c}$, and the critical temperature $T_c$ by solving the Dyson-Schwinger equation of the neutron propagator. We first carry out calculations under the widely used bare vertex approximation and then incorporate the contribution of the lowest-order vertex correction. This vertex correction is not negligible even at low densities and its importance is further enhanced as the density increases. The transition critical line on density-temperature plane obtained under the bare vertex approximation is substantially changed after including the vertex correction. These results indicate that the vertex corrections play a significant role and need to be seriously taken into account.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/acdfec","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In some quantum many particle systems, the fermions could form Cooper pairs by exchanging intermediate bosons. This then drives a superconducting phase transition or a superfluid transition. Such transitions should be theoretically investigated by using proper non-perturbative methods. Here we take the neutron superfluid transition as an example and study the Cooper pairing of neutrons mediated by neutral $\pi$-mesons in the low density region of a neutron matter. We perform a non-perturbative analysis of the neutron-meson coupling and compute the pairing gap $\Delta_{s}$, the critical density $\rho_{c}$, and the critical temperature $T_c$ by solving the Dyson-Schwinger equation of the neutron propagator. We first carry out calculations under the widely used bare vertex approximation and then incorporate the contribution of the lowest-order vertex correction. This vertex correction is not negligible even at low densities and its importance is further enhanced as the density increases. The transition critical line on density-temperature plane obtained under the bare vertex approximation is substantially changed after including the vertex correction. These results indicate that the vertex corrections play a significant role and need to be seriously taken into account.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.