Blockwise acceleration of alternating least squares for canonical tensor decomposition

IF 1.8 3区 数学 Q1 MATHEMATICS
D. Evans, Nan Ye
{"title":"Blockwise acceleration of alternating least squares for canonical tensor decomposition","authors":"D. Evans, Nan Ye","doi":"10.1002/nla.2516","DOIUrl":null,"url":null,"abstract":"The canonical polyadic (CP) decomposition of tensors is one of the most important tensor decompositions. While the well‐known alternating least squares (ALS) algorithm is often considered the workhorse algorithm for computing the CP decomposition, it is known to suffer from slow convergence in many cases and various algorithms have been proposed to accelerate it. In this article, we propose a new accelerated ALS algorithm that accelerates ALS in a blockwise manner using a simple momentum‐based extrapolation technique and a random perturbation technique. Specifically, our algorithm updates one factor matrix (i.e., block) at a time, as in ALS, with each update consisting of a minimization step that directly reduces the reconstruction error, an extrapolation step that moves the factor matrix along the previous update direction, and a random perturbation step for breaking convergence bottlenecks. Our extrapolation strategy takes a simpler form than the state‐of‐the‐art extrapolation strategies and is easier to implement. Our algorithm has negligible computational overheads relative to ALS and is simple to apply. Empirically, our proposed algorithm shows strong performance as compared to the state‐of‐the‐art acceleration techniques on both simulated and real tensors.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2516","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The canonical polyadic (CP) decomposition of tensors is one of the most important tensor decompositions. While the well‐known alternating least squares (ALS) algorithm is often considered the workhorse algorithm for computing the CP decomposition, it is known to suffer from slow convergence in many cases and various algorithms have been proposed to accelerate it. In this article, we propose a new accelerated ALS algorithm that accelerates ALS in a blockwise manner using a simple momentum‐based extrapolation technique and a random perturbation technique. Specifically, our algorithm updates one factor matrix (i.e., block) at a time, as in ALS, with each update consisting of a minimization step that directly reduces the reconstruction error, an extrapolation step that moves the factor matrix along the previous update direction, and a random perturbation step for breaking convergence bottlenecks. Our extrapolation strategy takes a simpler form than the state‐of‐the‐art extrapolation strategies and is easier to implement. Our algorithm has negligible computational overheads relative to ALS and is simple to apply. Empirically, our proposed algorithm shows strong performance as compared to the state‐of‐the‐art acceleration techniques on both simulated and real tensors.
正则张量分解中交替最小二乘的块方向加速
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信