Optimal exercise frontier of Bermudan options by simulation methods

IF 0.6 Q4 BUSINESS, FINANCE
Dejun Xie, David A. Edwards, Xiaoxia Wu
{"title":"Optimal exercise frontier of Bermudan options by simulation methods","authors":"Dejun Xie, David A. Edwards, Xiaoxia Wu","doi":"10.1142/s242478632250013x","DOIUrl":null,"url":null,"abstract":"In this paper, a novel algorithm for determining the free exercise boundary for high-dimensional Bermudan option problems is presented. First, a rough estimate of the boundary is constructed on a fine (daily) time grid. This rough estimate is used to generate a more accurate estimate on a coarse time grid (exercise opportunities). Antithetic branching is used to reduce the computational workload. The method is validated by comparing it with other methods of solving the standard Black–Scholes problem. Finally, the method is applied to two cases of Bermudan options with a second stochastic variable: a stochastic interest rate and a stochastic volatility.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s242478632250013x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel algorithm for determining the free exercise boundary for high-dimensional Bermudan option problems is presented. First, a rough estimate of the boundary is constructed on a fine (daily) time grid. This rough estimate is used to generate a more accurate estimate on a coarse time grid (exercise opportunities). Antithetic branching is used to reduce the computational workload. The method is validated by comparing it with other methods of solving the standard Black–Scholes problem. Finally, the method is applied to two cases of Bermudan options with a second stochastic variable: a stochastic interest rate and a stochastic volatility.
百慕大期权的模拟最优行使边界
本文提出了一种确定高维百慕大期权问题自由行使边界的新算法。首先,在精细(每日)时间网格上构建边界的粗略估计。该粗略估计用于在粗略时间网格(锻炼机会)上生成更准确的估计。使用对偶分支来减少计算工作量。通过与其他解决标准Black-Scholes问题的方法进行比较,验证了该方法的有效性。最后,将该方法应用于具有第二个随机变量的百慕大期权的两种情况:随机利率和随机波动率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信