Vector fields with big and small volume on the 2-sphere

IF 0.5 4区 数学 Q3 MATHEMATICS
R. Albuquerque
{"title":"Vector fields with big and small volume on the 2-sphere","authors":"R. Albuquerque","doi":"10.32917/h2022009","DOIUrl":null,"url":null,"abstract":"We consider the problem of minimal volume vector fields on a given Riemann surface, specialising on the case of $M^\\star$, that is, the arbitrary radius 2-sphere with two antipodal points removed. We discuss the homology theory of the unit tangent bundle $(T^1M^\\star,\\partial T^1M^\\star)$ in relation with calibrations and a certain minimal volume equation. A particular family $X_{\\mathrm{m},k},\\:k\\in\\mathbb{N}$, of minimal vector fields on $M^\\star$ is found in an original fashion. The family has unbounded volume, $\\lim_k\\mathrm{vol}({X_{\\mathrm{m},k}}_{|\\Omega})=+\\infty$, on any given open subset $\\Omega$ of $M^\\star$ and indeed satisfies the necessary differential equation for minimality. Another vector field $X_\\ell$ is discovered on a region $\\Omega_1\\subset\\mathbb{S}^2$, with volume smaller than any other known \\textit{optimal} vector field restricted to $\\Omega_1$.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2022009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of minimal volume vector fields on a given Riemann surface, specialising on the case of $M^\star$, that is, the arbitrary radius 2-sphere with two antipodal points removed. We discuss the homology theory of the unit tangent bundle $(T^1M^\star,\partial T^1M^\star)$ in relation with calibrations and a certain minimal volume equation. A particular family $X_{\mathrm{m},k},\:k\in\mathbb{N}$, of minimal vector fields on $M^\star$ is found in an original fashion. The family has unbounded volume, $\lim_k\mathrm{vol}({X_{\mathrm{m},k}}_{|\Omega})=+\infty$, on any given open subset $\Omega$ of $M^\star$ and indeed satisfies the necessary differential equation for minimality. Another vector field $X_\ell$ is discovered on a region $\Omega_1\subset\mathbb{S}^2$, with volume smaller than any other known \textit{optimal} vector field restricted to $\Omega_1$.
二球面上大小体积的矢量场
我们考虑给定黎曼曲面上的最小体积矢量场问题,专门研究$M^\star$的情况,即去除了两个对点的任意半径的2-球面。我们讨论了单位切丛$(T^1M^\星,部分T^1M ^\星)$与定标和某个极小体积方程的同调理论。以原始方式找到了$m^\star$上最小向量域的特定族$X_{\mathrm{m},k},\:k\in\mathbb{N}$。该族在$m^\star$的任意给定开子集$\Omega$上具有无界体积,$\lim_k\mathrm{vol}({X_{\mathrm{m},k}}_{|\Omega})=+\infty$,并且确实满足极小性的必要微分方程。在区域$\Omega_1\subet\mathbb{S}^2$上发现了另一个向量场$X_\ell$,其体积小于任何其他已知的\textit{最优}向量场,该向量场被限制为$\Omega _1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信