Vector fields with big and small volume on the 2-sphere

Pub Date : 2021-10-14 DOI:10.32917/h2022009
R. Albuquerque
{"title":"Vector fields with big and small volume on the 2-sphere","authors":"R. Albuquerque","doi":"10.32917/h2022009","DOIUrl":null,"url":null,"abstract":"We consider the problem of minimal volume vector fields on a given Riemann surface, specialising on the case of $M^\\star$, that is, the arbitrary radius 2-sphere with two antipodal points removed. We discuss the homology theory of the unit tangent bundle $(T^1M^\\star,\\partial T^1M^\\star)$ in relation with calibrations and a certain minimal volume equation. A particular family $X_{\\mathrm{m},k},\\:k\\in\\mathbb{N}$, of minimal vector fields on $M^\\star$ is found in an original fashion. The family has unbounded volume, $\\lim_k\\mathrm{vol}({X_{\\mathrm{m},k}}_{|\\Omega})=+\\infty$, on any given open subset $\\Omega$ of $M^\\star$ and indeed satisfies the necessary differential equation for minimality. Another vector field $X_\\ell$ is discovered on a region $\\Omega_1\\subset\\mathbb{S}^2$, with volume smaller than any other known \\textit{optimal} vector field restricted to $\\Omega_1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of minimal volume vector fields on a given Riemann surface, specialising on the case of $M^\star$, that is, the arbitrary radius 2-sphere with two antipodal points removed. We discuss the homology theory of the unit tangent bundle $(T^1M^\star,\partial T^1M^\star)$ in relation with calibrations and a certain minimal volume equation. A particular family $X_{\mathrm{m},k},\:k\in\mathbb{N}$, of minimal vector fields on $M^\star$ is found in an original fashion. The family has unbounded volume, $\lim_k\mathrm{vol}({X_{\mathrm{m},k}}_{|\Omega})=+\infty$, on any given open subset $\Omega$ of $M^\star$ and indeed satisfies the necessary differential equation for minimality. Another vector field $X_\ell$ is discovered on a region $\Omega_1\subset\mathbb{S}^2$, with volume smaller than any other known \textit{optimal} vector field restricted to $\Omega_1$.
分享
查看原文
二球面上大小体积的矢量场
我们考虑给定黎曼曲面上的最小体积矢量场问题,专门研究$M^\star$的情况,即去除了两个对点的任意半径的2-球面。我们讨论了单位切丛$(T^1M^\星,部分T^1M ^\星)$与定标和某个极小体积方程的同调理论。以原始方式找到了$m^\star$上最小向量域的特定族$X_{\mathrm{m},k},\:k\in\mathbb{N}$。该族在$m^\star$的任意给定开子集$\Omega$上具有无界体积,$\lim_k\mathrm{vol}({X_{\mathrm{m},k}}_{|\Omega})=+\infty$,并且确实满足极小性的必要微分方程。在区域$\Omega_1\subet\mathbb{S}^2$上发现了另一个向量场$X_\ell$,其体积小于任何其他已知的\textit{最优}向量场,该向量场被限制为$\Omega _1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信