Joint convergence of sample cross-covariance matrices

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
M. Bhattacharjee, A. Bose, Apratim Dey
{"title":"Joint convergence of sample cross-covariance matrices","authors":"M. Bhattacharjee, A. Bose, Apratim Dey","doi":"10.30757/alea.v20-14","DOIUrl":null,"url":null,"abstract":"Suppose $X$ and $Y$ are $p\\times n$ matrices each with mean $0$, variance $1$ and where all moments of any order are uniformly bounded as $p,n \\to \\infty$. Moreover, the entries $(X_{ij}, Y_{ij})$ are independent across $i,j$ with a common correlation $\\rho$. Let $C=n^{-1}XY^*$ be the sample cross-covariance matrix. We show that if $n, p\\to \\infty, p/n\\to y\\neq 0$, then $C$ converges in the algebraic sense and the limit moments depend only on $\\rho$. Independent copies of such matrices with same $p$ but different $n$, say $\\{n_l\\}$, different correlations $\\{\\rho_l\\}$, and different non-zero $y$'s, say $\\{y_l\\}$ also converge jointly and are asymptotically free. When $y=0$, the matrix $\\sqrt{np^{-1}}(C-\\rho I_p)$ converges to an elliptic variable with parameter $\\rho^2$. In particular, this elliptic variable is circular when $\\rho=0$ and is semi-circular when $\\rho=1$. If we take independent $C_l$, then the matrices $\\{\\sqrt{n_lp^{-1}}(C_l-\\rho_l I_p)\\}$ converge jointly and are also asymptotically free. As a consequence, the limiting spectral distribution of any symmetric matrix polynomial exists and has compact support.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Suppose $X$ and $Y$ are $p\times n$ matrices each with mean $0$, variance $1$ and where all moments of any order are uniformly bounded as $p,n \to \infty$. Moreover, the entries $(X_{ij}, Y_{ij})$ are independent across $i,j$ with a common correlation $\rho$. Let $C=n^{-1}XY^*$ be the sample cross-covariance matrix. We show that if $n, p\to \infty, p/n\to y\neq 0$, then $C$ converges in the algebraic sense and the limit moments depend only on $\rho$. Independent copies of such matrices with same $p$ but different $n$, say $\{n_l\}$, different correlations $\{\rho_l\}$, and different non-zero $y$'s, say $\{y_l\}$ also converge jointly and are asymptotically free. When $y=0$, the matrix $\sqrt{np^{-1}}(C-\rho I_p)$ converges to an elliptic variable with parameter $\rho^2$. In particular, this elliptic variable is circular when $\rho=0$ and is semi-circular when $\rho=1$. If we take independent $C_l$, then the matrices $\{\sqrt{n_lp^{-1}}(C_l-\rho_l I_p)\}$ converge jointly and are also asymptotically free. As a consequence, the limiting spectral distribution of any symmetric matrix polynomial exists and has compact support.
样本交叉协方差矩阵的联合收敛性
假设$X$和$Y$是$p\timesn$矩阵,每个矩阵的平均值为$0$,方差为$1$,其中任何阶的所有矩都一致有界为$p,n\to\infty$。此外,条目$(X_{ij},Y_{ij})$在$i,j$上是独立的,具有公共相关性$\rho$。设$C=n^{-1}XY^*$是样本互协方差矩阵。我们证明了如果$n,p\to\infty,p/n\toy\neq0$,那么$C$在代数意义上收敛,并且极限矩仅依赖于$\rho$。具有相同$p$但不同$n$的矩阵的独立副本,例如$\{n_l\}$,不同相关性$\{\rho_l\}$,以及不同的非零$y$,例如$\{y_l\}}$也联合收敛并且渐近自由。当$y=0$时,矩阵$\sqrt{np^{-1}}(C-\rho I_p)$收敛于参数为$\rho^2$的椭圆变量。特别是,当$\rho=0$时,这个椭圆变量是圆形的,当$\ rho=1$时,它是半圆形的。如果我们取独立的$C_l$,则矩阵$\{\sqrt{n_lp^{-1}}(C_l-\rho_l I_p)\}$联合收敛,并且也是渐近自由的。因此,任何对称矩阵多项式的极限谱分布都存在,并且具有紧致支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信