Linear Codes Over a General Infinite Family of Rings and Macwilliams-Type Relations

IF 1 Q1 MATHEMATICS
Irwansyah, D. Suprijanto
{"title":"Linear Codes Over a General Infinite Family of Rings and Macwilliams-Type Relations","authors":"Irwansyah, D. Suprijanto","doi":"10.47443/dml.2022.091","DOIUrl":null,"url":null,"abstract":"We study structural properties of linear codes over the ring R k which is defined by R [ v 1 , v 2 , . . . , v k ] with conditions v 2 i = v i for i = 1 , 2 , . . . , k , where R is any finite commutative Frobenius ring. We describe these linear codes in terms of necessary and sufficient conditions involving Gray maps, and we use these characterizations to construct Hermitian and Euclidean self-dual linear codes of this ring of arbitrary given length. We also derive MacWilliams-type relations for these codes with respect to Hamming weight enumerator as well as complete and symmetrized weight enumerators. As an application of the obtained results, we construct several optimal linear codes over Z 4 .","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study structural properties of linear codes over the ring R k which is defined by R [ v 1 , v 2 , . . . , v k ] with conditions v 2 i = v i for i = 1 , 2 , . . . , k , where R is any finite commutative Frobenius ring. We describe these linear codes in terms of necessary and sufficient conditions involving Gray maps, and we use these characterizations to construct Hermitian and Euclidean self-dual linear codes of this ring of arbitrary given length. We also derive MacWilliams-type relations for these codes with respect to Hamming weight enumerator as well as complete and symmetrized weight enumerators. As an application of the obtained results, we construct several optimal linear codes over Z 4 .
一般无限环族上的线性码与macwilliams型关系
我们研究了由R[v1,v2,…,vk]定义的环Rk上线性码的结构性质,条件为v2i=vi,i=1,2,k,其中R是任意有限交换Frobenius环。我们用涉及Gray映射的必要和充分条件来描述这些线性码,并利用这些特征来构造任意给定长度的环的Hermitian和Euclidean自对偶线性码。我们还导出了这些代码相对于Hamming权枚举器以及完全和对称权枚举器的MacWilliams类型关系。作为所得结果的一个应用,我们构造了Z 4上的几个最优线性码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信