Geometric measures of information for quantum state characterization

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
W. Miller, Shahabeddin M. Aslmarand, P. Alsing, V. Rana
{"title":"Geometric measures of information for quantum state characterization","authors":"W. Miller, Shahabeddin M. Aslmarand, P. Alsing, V. Rana","doi":"10.4310/amsa.2019.v4.n2.a5","DOIUrl":null,"url":null,"abstract":"We analyze the geometry of a joint distribution over a set of discrete random variables. We briefly review Shannon's entropy, conditional entropy, mutual information and conditional mutual information. We review the entropic information distance formula of Rokhlin and Rajski. We then define an analogous information area. We motivate this definition and discuss its properties. We extend this definition to higher-dimensional volumes. We briefly discuss the potential utility for these geometric measures in quantum information processing.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2019.v4.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

Abstract

We analyze the geometry of a joint distribution over a set of discrete random variables. We briefly review Shannon's entropy, conditional entropy, mutual information and conditional mutual information. We review the entropic information distance formula of Rokhlin and Rajski. We then define an analogous information area. We motivate this definition and discuss its properties. We extend this definition to higher-dimensional volumes. We briefly discuss the potential utility for these geometric measures in quantum information processing.
量子态表征的几何信息测度
我们分析了一组离散随机变量上的联合分布的几何结构。我们简要回顾了香农熵、条件熵、互信息和条件互信息。我们回顾了Rokhlin和Rajski的熵信息距离公式。然后我们定义了一个类似的信息区域。我们激发了这个定义,并讨论了它的性质。我们将这个定义扩展到更高维度的体积。我们简要讨论了这些几何度量在量子信息处理中的潜在效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信