{"title":"The suite of Taylor–Galerkin class schemes for ice transport on sphere implemented by the INMOST package","authors":"Sergey S. Petrov, N. Iakovlev","doi":"10.1515/rnam-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract Realizations of the numerical solution of the scalar transport equation on the sphere, written in divergent form, are presented. Various temporal discretizations are considered: the one-step Taylor–Galerkin method (TG2), the two-step Taylor–Galerkin method of the second (TTG2), third (TTG3), and fourth (TTG4) orders. The standard Finite-Element Galerkin method with linear basis functions on a triangle is applied as spatial discretization. The flux correction technique (FCT) is implemented. Test runs are carried out with different initial profiles: a function from C∞ (Gaussian profile) and a discontinuous function (slotted cylinder). The profiles are advected by reversible, nondivergent velocity fields, therefore the initial distribution coincides with the final one. The case of a divergent velocity field is also considered to test the conservation and positivity properties of the schemes. It is demonstrated that TG2, TTG3, and TTG4 schemes with FCT applied give the best result for small Courant numbers, and TTG2, TTG4 are preferable in case of large Courant number. However, TTG2+FCT scheme has the worst stability. The use of FCT increases the integral errors, but ensures that the solution is positive with high accuracy. The implemented schemes are included in the dynamic core of a new sea ice model developed using the INMOST package. The acceleration of the parallel program and solution convergence with spatial resolution are demonstrated.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"36 1","pages":"227 - 238"},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2021-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Realizations of the numerical solution of the scalar transport equation on the sphere, written in divergent form, are presented. Various temporal discretizations are considered: the one-step Taylor–Galerkin method (TG2), the two-step Taylor–Galerkin method of the second (TTG2), third (TTG3), and fourth (TTG4) orders. The standard Finite-Element Galerkin method with linear basis functions on a triangle is applied as spatial discretization. The flux correction technique (FCT) is implemented. Test runs are carried out with different initial profiles: a function from C∞ (Gaussian profile) and a discontinuous function (slotted cylinder). The profiles are advected by reversible, nondivergent velocity fields, therefore the initial distribution coincides with the final one. The case of a divergent velocity field is also considered to test the conservation and positivity properties of the schemes. It is demonstrated that TG2, TTG3, and TTG4 schemes with FCT applied give the best result for small Courant numbers, and TTG2, TTG4 are preferable in case of large Courant number. However, TTG2+FCT scheme has the worst stability. The use of FCT increases the integral errors, but ensures that the solution is positive with high accuracy. The implemented schemes are included in the dynamic core of a new sea ice model developed using the INMOST package. The acceleration of the parallel program and solution convergence with spatial resolution are demonstrated.
期刊介绍:
The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest.
Topics:
-numerical analysis-
numerical linear algebra-
finite element methods for PDEs-
iterative methods-
Monte-Carlo methods-
mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.