{"title":"Free Vibrations of Multi-Degree Structures: Solving Quadratic Eigenvalue Problems with an Excitation and Fast Iterative Detection Method","authors":"Chein-Shan Liu, C. Kuo, Chih‐Wen Chang","doi":"10.3390/vibration5040053","DOIUrl":null,"url":null,"abstract":"For the free vibrations of multi-degree mechanical structures appeared in structural dynamics, we solve the quadratic eigenvalue problem either by linearizing it to a generalized eigenvalue problem or directly treating it by developing the iterative detection methods for the real and complex eigenvalues. To solve the generalized eigenvalue problem, we impose a nonzero exciting vector into the eigen-equation, and solve a nonhomogeneous linear system to obtain a response curve, which consists of the magnitudes of the n-vectors with respect to the eigen-parameters in a range. The n-dimensional eigenvector is supposed to be a superposition of a constant exciting vector and an m-vector, which can be obtained in terms of eigen-parameter by solving the projected eigen-equation. In doing so, we can save computational cost because the response curve is generated from the data acquired in a lower dimensional subspace. We develop a fast iterative detection method by maximizing the magnitude to locate the eigenvalue, which appears as a peak in the response curve. Through zoom-in sequentially, very accurate eigenvalue can be obtained. We reduce the number of eigen-equation to n−1 to find the eigen-mode with its certain component being normalized to the unit. The real and complex eigenvalues and eigen-modes can be determined simultaneously, quickly and accurately by the proposed methods.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5040053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
For the free vibrations of multi-degree mechanical structures appeared in structural dynamics, we solve the quadratic eigenvalue problem either by linearizing it to a generalized eigenvalue problem or directly treating it by developing the iterative detection methods for the real and complex eigenvalues. To solve the generalized eigenvalue problem, we impose a nonzero exciting vector into the eigen-equation, and solve a nonhomogeneous linear system to obtain a response curve, which consists of the magnitudes of the n-vectors with respect to the eigen-parameters in a range. The n-dimensional eigenvector is supposed to be a superposition of a constant exciting vector and an m-vector, which can be obtained in terms of eigen-parameter by solving the projected eigen-equation. In doing so, we can save computational cost because the response curve is generated from the data acquired in a lower dimensional subspace. We develop a fast iterative detection method by maximizing the magnitude to locate the eigenvalue, which appears as a peak in the response curve. Through zoom-in sequentially, very accurate eigenvalue can be obtained. We reduce the number of eigen-equation to n−1 to find the eigen-mode with its certain component being normalized to the unit. The real and complex eigenvalues and eigen-modes can be determined simultaneously, quickly and accurately by the proposed methods.