Aut-invariant norms and Aut-invariant quasimorphisms on free and surface groups

IF 1.1 3区 数学 Q1 MATHEMATICS
Michael Brandenbursky, Michał Marcinkowski
{"title":"Aut-invariant norms and Aut-invariant quasimorphisms on free and surface groups","authors":"Michael Brandenbursky, Michał Marcinkowski","doi":"10.4171/cmh/470","DOIUrl":null,"url":null,"abstract":"Let $F_n$ be the free group on $n$ generators and $\\Gamma_g$ the surface group of genus $g$. We consider two particular generating sets: the set of all primitive elements in $F_n$ and the set of all simple loops in $\\Gamma_g$. We give a complete characterization of distorted and undistorted elements in the corresponding $Aut$-invariant word metrics. In particular, we reprove Stallings theorem and answer a question of Danny Calegari about the growth of simple loops. In addition, we construct infinitely many quasimorphisms on $F_2$ that are $Aut(F_2)$-invariant. This answers an open problem posed by Miklos Abert.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/470","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/470","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Let $F_n$ be the free group on $n$ generators and $\Gamma_g$ the surface group of genus $g$. We consider two particular generating sets: the set of all primitive elements in $F_n$ and the set of all simple loops in $\Gamma_g$. We give a complete characterization of distorted and undistorted elements in the corresponding $Aut$-invariant word metrics. In particular, we reprove Stallings theorem and answer a question of Danny Calegari about the growth of simple loops. In addition, we construct infinitely many quasimorphisms on $F_2$ that are $Aut(F_2)$-invariant. This answers an open problem posed by Miklos Abert.
自由群和面群上的非恒定模和非恒定拟同构
设$F_n$是$n$生成元上的自由群,$\Gamma_g$是亏格$g$的表面群。我们考虑两个特殊的生成集:$F_n$中所有基元的集合和$\Gamma_g$中所有简单循环的集合。我们给出了相应的$Aut$不变词度量中失真元素和未失真元素的完整刻画。特别地,我们重新证明了Stallings定理,并回答了Danny Calegari关于简单循环增长的一个问题。此外,我们在$F_2$上构造了无限多个不变的拟态射。这回答了Miklos Abert提出的一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信