Mustapha D. Garba, Abubakar M. Sunusi, Sadi A. Hassan, S. David Jackson
{"title":"Biodiesel Production from Waste Cooking Oil, Using an Acid Modified Carbon Catalyst Derived from Cassava Peels","authors":"Mustapha D. Garba, Abubakar M. Sunusi, Sadi A. Hassan, S. David Jackson","doi":"10.1134/S2070050423010038","DOIUrl":null,"url":null,"abstract":"<p>An investigation was carried out to study the feasibility of using synthesized acid-bearing carbonaceous catalyst (SO<sub>3</sub>H–C and PO<sub>4</sub>H<sub>2</sub>–C) derived from cassava peel for biodiesel production from waste cooking oil (WCO). The catalyst activity was tested using an autoclave type reactor and three different oil to alcohol ratios (1 : 3, 1 : 5 and 1 : 7) at four different temperatures (50–80°C) for 4 h. Two types of alcohol (i.e. methanol (CH<sub>3</sub>OH) and ethanol (C<sub>2</sub>H<sub>5</sub>OH) were used to understand the efficiency of using alcohol in the process. The study indicates that reaction using high ratio of alcohol (1 : 7) generally produced high yield of the biodiesel compared to other ratios. The yield of the biodiesel also increased with increasing temperature over all the reaction systems. The carbon modified with sulphuric acid catalyst showed the highest yield of ~ 90%, which was obtained at 80°C using a 1 : 7 ratio of WCO : alcohol. It was also observed that reaction with methanol produced better yields compared to ethanol reactions where significant differences were observed across both temperature and ratio. The catalysts were characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, surface area and pore volume analyses. The catalyst is of interest because it is green, non-toxic and synthesized using cassava peel waste.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 1","pages":"99 - 107"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050423010038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An investigation was carried out to study the feasibility of using synthesized acid-bearing carbonaceous catalyst (SO3H–C and PO4H2–C) derived from cassava peel for biodiesel production from waste cooking oil (WCO). The catalyst activity was tested using an autoclave type reactor and three different oil to alcohol ratios (1 : 3, 1 : 5 and 1 : 7) at four different temperatures (50–80°C) for 4 h. Two types of alcohol (i.e. methanol (CH3OH) and ethanol (C2H5OH) were used to understand the efficiency of using alcohol in the process. The study indicates that reaction using high ratio of alcohol (1 : 7) generally produced high yield of the biodiesel compared to other ratios. The yield of the biodiesel also increased with increasing temperature over all the reaction systems. The carbon modified with sulphuric acid catalyst showed the highest yield of ~ 90%, which was obtained at 80°C using a 1 : 7 ratio of WCO : alcohol. It was also observed that reaction with methanol produced better yields compared to ethanol reactions where significant differences were observed across both temperature and ratio. The catalysts were characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, surface area and pore volume analyses. The catalyst is of interest because it is green, non-toxic and synthesized using cassava peel waste.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.