{"title":"Enhanced insect and fungal resistance of maize callus transgenically expressing a maize E2F regulatory gene","authors":"Patrick F. Dowd, Eric T. Johnson","doi":"10.1016/j.aggene.2019.100086","DOIUrl":null,"url":null,"abstract":"<div><p><span>A maize gene coding for an E2F<span> regulatory protein located in a quantitative trait locus (QTL) for </span></span><span><em>Fusarium</em></span><span> ear rot resistance was cloned and transgenically introduced into maize callus. Several of the transformants were more resistant to feeding by corn earworms<span> and fall armyworms, and retarded growth of </span></span><em>Fusarium proliferatum</em><span><span><span> compared to GUS control transformants. More effective transformants contained higher levels of E2F product than GUS controls as indicated by antibody detection. Increased and decreased levels of regulated proteins were noted in E2F overexpressing compared to GUS expressing control transformants. These differentially produced proteins were previously reported to be </span>interactors with the </span>E2F protein, suggesting E2F is affecting the production of these proteins. Other proteins coded for by genes reported to interact with the relevant E2F protein and associated phenotypic effects that could be promoting resistance include those that would increase cell resistance to water stress, increase the presence of reactive oxygen species, and increase the density of indigestible components. Although the full complex of responsible proteins regulated by the E2F examined that promote resistance to insects and fungi remains to be determined, overproduction of the E2F in transgenic callus enhances resistance to some maize insect and fungal pests.</span></p></div>","PeriodicalId":37751,"journal":{"name":"Agri Gene","volume":"12 ","pages":"Article 100086"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aggene.2019.100086","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agri Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352215119300066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 6
Abstract
A maize gene coding for an E2F regulatory protein located in a quantitative trait locus (QTL) for Fusarium ear rot resistance was cloned and transgenically introduced into maize callus. Several of the transformants were more resistant to feeding by corn earworms and fall armyworms, and retarded growth of Fusarium proliferatum compared to GUS control transformants. More effective transformants contained higher levels of E2F product than GUS controls as indicated by antibody detection. Increased and decreased levels of regulated proteins were noted in E2F overexpressing compared to GUS expressing control transformants. These differentially produced proteins were previously reported to be interactors with the E2F protein, suggesting E2F is affecting the production of these proteins. Other proteins coded for by genes reported to interact with the relevant E2F protein and associated phenotypic effects that could be promoting resistance include those that would increase cell resistance to water stress, increase the presence of reactive oxygen species, and increase the density of indigestible components. Although the full complex of responsible proteins regulated by the E2F examined that promote resistance to insects and fungi remains to be determined, overproduction of the E2F in transgenic callus enhances resistance to some maize insect and fungal pests.
Agri GeneAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
自引率
0.00%
发文量
0
期刊介绍:
Agri Gene publishes papers that focus on the regulation, expression, function and evolution of genes in crop plants, farm animals, and agriculturally important insects and microorganisms. Agri Gene strives to be a diverse journal and topics in multiple fields will be considered for publication so long as their main focus is on agriculturally important organisms (plants, animals, insects, or microorganisms). Although not limited to the following, some examples of potential topics include: Gene discovery and characterization. Genetic markers to guide traditional breeding. Genetic effects of transposable elements. Evolutionary genetics, molecular evolution, population genetics, and phylogenetics. Profiling of gene expression and genetic variation. Biotechnology and crop or livestock improvement. Genetic improvement of biological control microorganisms. Genetic control of secondary metabolic pathways and metabolic enzymes of crop pathogens. Transcription analysis of beneficial or pest insect developmental stages Agri Gene encourages submission of novel manuscripts that present a reasonable level of analysis, functional relevance and/or mechanistic insight. Agri Gene also welcomes papers that have predominantly a descriptive component but improve the essential basis of knowledge for subsequent functional studies, or which provide important confirmation of recently published discoveries provided that the information is new.