Existence of positive global radial solutions to nonlinear elliptic systems

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Padhi, J. Dix
{"title":"Existence of positive global radial solutions to nonlinear elliptic systems","authors":"S. Padhi, J. Dix","doi":"10.58997/ejde.sp.02.p1","DOIUrl":null,"url":null,"abstract":"In this article we obtain global positive and radially symmetric solutions to the system of nonlinear elliptic equations $$ \\operatorname{div}\\big(\\phi_j(|\\nabla u|) \\nabla u\\big) +a_j(x)\\phi_j(|\\nabla u|) |\\nabla u| =p_j(x)f_j(u_1(x),\\dots,u_k(x))\\,, $$ and in particular to Laplace's equation $$ \\Delta u_j(x) =p_j(x)f_j(u_1(x),\\dots,u_k(x))\\,, $$ where \\(j=1,\\dots,k\\), \\( x\\in\\mathbb{R}^N\\), \\(N\\geq 3\\), \\(\\Delta \\) is the Laplacian operator, and \\(\\nabla\\) is the gradient. Also we state conditions for solutions to be bounded, and to be unbounded. With an example we illustrate our results.\nSee also https://ejde.math.txstate.edu/special/02/p1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.p1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we obtain global positive and radially symmetric solutions to the system of nonlinear elliptic equations $$ \operatorname{div}\big(\phi_j(|\nabla u|) \nabla u\big) +a_j(x)\phi_j(|\nabla u|) |\nabla u| =p_j(x)f_j(u_1(x),\dots,u_k(x))\,, $$ and in particular to Laplace's equation $$ \Delta u_j(x) =p_j(x)f_j(u_1(x),\dots,u_k(x))\,, $$ where \(j=1,\dots,k\), \( x\in\mathbb{R}^N\), \(N\geq 3\), \(\Delta \) is the Laplacian operator, and \(\nabla\) is the gradient. Also we state conditions for solutions to be bounded, and to be unbounded. With an example we illustrate our results. See also https://ejde.math.txstate.edu/special/02/p1/abstr.html
非线性椭圆型系统正整体径向解的存在性
在本文中,我们得到了非线性椭圆方程组$$\operatorname{div}\big(\phi_j(|\nabla u|)\nabla u \big)+a_j(x)\phi_j(|\napla u|$$,其中\(j=1,\dots,k\),\(x\In\mathbb{R}^N\),\(N\geq3\),\(\Delta\)是拉普拉斯算子,\(\nabla\)是梯度。此外,我们还陈述了解有界和无界的条件。我们用一个例子来说明我们的结果。另请参阅https://ejde.math.txstate.edu/special/02/p1/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信