Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom

IF 0.6 Q4 MATHEMATICS, APPLIED
Billel Guelmame, D. Clamond, S. Junca
{"title":"Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom","authors":"Billel Guelmame, D. Clamond, S. Junca","doi":"10.4310/maa.2022.v29.n3.a4","DOIUrl":null,"url":null,"abstract":"We prove in this note the local (in time) well-posedness of a broad class of $2 \\times 2$ symmetrisable hyperbolic system involving additional non-local terms. The latest result implies the local well-posedness of the non dispersive regularisation of the Saint-Venant system with uneven bottom introduced by Clamond et al. [2]. We also prove that, as long as the first derivatives are bounded, singularities cannot appear.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2022.v29.n3.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We prove in this note the local (in time) well-posedness of a broad class of $2 \times 2$ symmetrisable hyperbolic system involving additional non-local terms. The latest result implies the local well-posedness of the non dispersive regularisation of the Saint-Venant system with uneven bottom introduced by Clamond et al. [2]. We also prove that, as long as the first derivatives are bounded, singularities cannot appear.
具有不均匀底的圣维南体系的哈密顿正则化的局部适定性
在本文中,我们证明了一类广义的$2\times2$对称双曲系统的局部(在时间上)适定性,该系统包含额外的非局部项。最新结果暗示了Clamond等人[2]引入的底部不均匀的Saint-Venant系统的非色散正则化的局部适定性。我们还证明了,只要一阶导数是有界的,奇点就不会出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信