Energy transformation without using filter on high resistive load

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
Erol Can
{"title":"Energy transformation without using filter on high resistive load","authors":"Erol Can","doi":"10.30765/er.40.1.06","DOIUrl":null,"url":null,"abstract":"In this paper, 9-level, 17-level, 19-level, 21-level, 27-level, and 39- level inverters with SPWM are presented. According to a switching function, the high-multilevel inverter design has been described since a new multi-level inverter structure is considered. The multilevel inverter structure is designed with placing switches and sources on levels. Pulse width modulation, controlling switches in the inverter structure, is also produced by comparison between triangles and sinus signals. Operating sequences of the switches are given in the table in order to demonstrate the inverter operation characteristic with the produced signals. Then, mathematical equations are formed by considering an operation of switches on the load. In simulations and experiments, the 9-level, 17- level, 19-level, 21-level, 27-level, and 39-level inverters are performed on the resistance (R) and inductance (L) loads with different resistance, because it is difficult to generate current and voltage with an acceptable harmonic distortion on the impedances which have high ohmic values. After applications of experimentation and simulation, the obtained results are compared with other published papers of results and the international IEEE standard, which is 5% for harmonic distortions of creating currents and voltages","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":"40 1","pages":"39-47"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.40.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, 9-level, 17-level, 19-level, 21-level, 27-level, and 39- level inverters with SPWM are presented. According to a switching function, the high-multilevel inverter design has been described since a new multi-level inverter structure is considered. The multilevel inverter structure is designed with placing switches and sources on levels. Pulse width modulation, controlling switches in the inverter structure, is also produced by comparison between triangles and sinus signals. Operating sequences of the switches are given in the table in order to demonstrate the inverter operation characteristic with the produced signals. Then, mathematical equations are formed by considering an operation of switches on the load. In simulations and experiments, the 9-level, 17- level, 19-level, 21-level, 27-level, and 39-level inverters are performed on the resistance (R) and inductance (L) loads with different resistance, because it is difficult to generate current and voltage with an acceptable harmonic distortion on the impedances which have high ohmic values. After applications of experimentation and simulation, the obtained results are compared with other published papers of results and the international IEEE standard, which is 5% for harmonic distortions of creating currents and voltages
高阻负载下不使用滤波器的能量转换
本文介绍了9电平、17电平、19电平、21电平、27电平和39电平SPWM逆变器。根据开关函数,由于考虑了一种新的多电平逆变器结构,因此描述了高电平逆变器的设计。多电平逆变器结构设计为将开关和电源置于电平上。脉冲宽度调制,控制逆变器结构中的开关,也是通过三角形和正弦信号之间的比较产生的。表中给出了开关的操作顺序,以展示所产生信号的逆变器操作特性。然后,通过考虑开关在负载上的操作来形成数学方程。在模拟和实验中,9电平、17电平、19电平、21电平、27电平和39电平逆变器在具有不同电阻的电阻(R)和电感(L)负载上执行,因为难以在具有高欧姆值的阻抗上产生具有可接受谐波失真的电流和电压。经过实验和仿真的应用,将所得结果与其他已发表的结果论文和国际IEEE标准进行了比较,IEEE标准对产生电流和电压的谐波失真为5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Review
Engineering Review ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
0.00%
发文量
8
期刊介绍: Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信