Performance Prediction of Building Integrated Photovoltaic System Using Hybrid Deep Learning Algorithm

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Manivannan Ragupathi, Rengaraj Ramasubbu
{"title":"Performance Prediction of Building Integrated Photovoltaic System Using Hybrid Deep Learning Algorithm","authors":"Manivannan Ragupathi, Rengaraj Ramasubbu","doi":"10.1155/2022/6111030","DOIUrl":null,"url":null,"abstract":"In a grid-connected photovoltaic system, forecasting is a necessary and critical step. Solar Power is very nonlinear; this article develops and analyses building integrated photovoltaic (BIPV) forecasting algorithms for different timeframes, such as an hour, a day, and a week ahead, to manage grid operation effectively. However, a model built for a certain time scale may improve performance at that time scale but cannot be utilized to make predictions at other time scales. Here, we demonstrate how to use the multitask learning algorithm to create a multitime scale model for solar BIPV forecasting. Effective resource distribution across several tasks is shown. The suggested multitask learning approach is implemented using LSTM neural networks and evaluated over a range of horizons. We employed a modified version of the Chicken Swarm Optimizer (CSO) that takes the best features of the CSO and the GWO algorithms and merges them into one efficient approach to estimate the hyperparameters of the proposed LSTM model. The proposed approach consistently outperformed state-of-the-art single-timescale forecasting algorithms across all time scales.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6111030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In a grid-connected photovoltaic system, forecasting is a necessary and critical step. Solar Power is very nonlinear; this article develops and analyses building integrated photovoltaic (BIPV) forecasting algorithms for different timeframes, such as an hour, a day, and a week ahead, to manage grid operation effectively. However, a model built for a certain time scale may improve performance at that time scale but cannot be utilized to make predictions at other time scales. Here, we demonstrate how to use the multitask learning algorithm to create a multitime scale model for solar BIPV forecasting. Effective resource distribution across several tasks is shown. The suggested multitask learning approach is implemented using LSTM neural networks and evaluated over a range of horizons. We employed a modified version of the Chicken Swarm Optimizer (CSO) that takes the best features of the CSO and the GWO algorithms and merges them into one efficient approach to estimate the hyperparameters of the proposed LSTM model. The proposed approach consistently outperformed state-of-the-art single-timescale forecasting algorithms across all time scales.
基于混合深度学习算法的建筑一体化光伏系统性能预测
在并网光伏系统中,预测是必要和关键的一步。太阳能是非常非线性的;本文开发并分析了不同时间段(如一小时、一天和一周)的建筑集成光伏(BIPV)预测算法,以有效管理电网运行。然而,为某个时间尺度构建的模型可以提高该时间尺度的性能,但不能用于在其他时间尺度进行预测。在这里,我们演示了如何使用多任务学习算法创建太阳能BIPV预测的多时间尺度模型。显示了跨多个任务的有效资源分配。所提出的多任务学习方法是使用LSTM神经网络实现的,并在一系列范围内进行评估。我们采用了鸡群优化器(CSO)的修改版本,该版本利用了CSO和GWO算法的最佳特征,并将它们合并为一种有效的方法来估计所提出的LSTM模型的超参数。所提出的方法在所有时间尺度上始终优于最先进的单时间尺度预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信