Asymptotic behavior of $j$-multiplicities

Pub Date : 2021-08-31 DOI:10.7146/math.scand.a-126029
T. H. Freitas, V. H. Pérez, P. Lima
{"title":"Asymptotic behavior of $j$-multiplicities","authors":"T. H. Freitas, V. H. Pérez, P. Lima","doi":"10.7146/math.scand.a-126029","DOIUrl":null,"url":null,"abstract":"Let $R= \\oplus_{n\\in \\mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\\mathfrak{m}_0)$. Let $R_+= \\oplus_{n\\in \\mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\\oplus_{n\\in \\mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\\dim(R_0)\\leq 2$ and $\\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\\ll0$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R= \oplus_{n\in \mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\mathfrak{m}_0)$. Let $R_+= \oplus_{n\in \mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\oplus_{n\in \mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\dim(R_0)\leq 2$ and $\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\ll0$.
分享
查看原文
$j$-乘法的渐近性态
设$R=\oplus_{n\in\mathbb{N}_0}R_n$是具有局部基环$(R_0,\mathfrak{m}_0)$。设$R_+=\oplus_{n\in\mathbb{n}}R_n$表示$R$的不相关理想,设$M=\opplus_{n\in \mathbb{Z}}M_n$是有限生成的分次$R$模。当$\dim(R_0)\leq 2$和$\mathfrak{q}_0$是$R_0$的任意理想,我们证明了分次局部上同调模$j_0({\mathfrak{q}_0},H_{R_+}^i(M)_n)$对所有$n\ll0$都具有多项式行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信