{"title":"Granger causality tests based on reduced variable information","authors":"Neng-Fang Tseng, Ying-Chao Hung, Junji Nakano","doi":"10.1111/jtsa.12720","DOIUrl":null,"url":null,"abstract":"<p>Granger causality is a classical and important technique for measuring predictability from one group of time series to another by incorporating information of the variables described by a full vector autoregressive (VAR) process. However, in some applications economic forecasts need to be made based on information provided merely by a portion of variates (e.g., removal of a listed stock due to halting, suspension or delisting). This requires a new formulation of forecast based on an embedded subprocess of VAR, whose theoretical properties are often difficult to obtain. To avoid the issue of identifying the VAR subprocess, we propose a computation-based approach so that sophisticated predictions can be made by utilizing a reduced variable information set estimated from sampled data. Such estimated information set allows us to develop a suitable statistical hypothesis testing procedure for characterizing all designated Granger causal relationships, as well as a useful graphical tool for presenting the causal structure over the prediction horizon. Finally, simulated data and a real example from the stock markets are used to illustrate the proposed method.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 3","pages":"444-462"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12720","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Granger causality is a classical and important technique for measuring predictability from one group of time series to another by incorporating information of the variables described by a full vector autoregressive (VAR) process. However, in some applications economic forecasts need to be made based on information provided merely by a portion of variates (e.g., removal of a listed stock due to halting, suspension or delisting). This requires a new formulation of forecast based on an embedded subprocess of VAR, whose theoretical properties are often difficult to obtain. To avoid the issue of identifying the VAR subprocess, we propose a computation-based approach so that sophisticated predictions can be made by utilizing a reduced variable information set estimated from sampled data. Such estimated information set allows us to develop a suitable statistical hypothesis testing procedure for characterizing all designated Granger causal relationships, as well as a useful graphical tool for presenting the causal structure over the prediction horizon. Finally, simulated data and a real example from the stock markets are used to illustrate the proposed method.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.