An end‐to‐end infant brain parcellation pipeline

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Limei Wang, Yue Sun, Weili Lin, Gang Li, Li Wang
{"title":"An end‐to‐end infant brain parcellation pipeline","authors":"Limei Wang,&nbsp;Yue Sun,&nbsp;Weili Lin,&nbsp;Gang Li,&nbsp;Li Wang","doi":"10.1016/j.imed.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Accurate infant brain parcellation is crucial for understanding early brain development; however, it is challenging due to the inherent low tissue contrast, high noise, and severe partial volume effects in infant magnetic resonance images (MRIs). The aim of this study was to develop an end-to-end pipeline that enabled accurate parcellation of infant brain MRIs.</p></div><div><h3>Methods</h3><p>We proposed an end-to-end pipeline that employs a two-stage global-to-local approach for accurate parcellation of infant brain MRIs. Specifically, in the global regions of interest (ROIs) localization stage, a combination of transformer and convolution operations was employed to capture both global spatial features and fine texture features, enabling an approximate localization of the ROIs across the whole brain. In the local ROIs refinement stage, leveraging the position priors from the first stage along with the raw MRIs, the boundaries of the ROIs are refined for a more accurate parcellation.</p></div><div><h3>Results</h3><p>We utilized the Dice ratio to evaluate the accuracy of parcellation results. Results on 263 subjects from National Database for Autism Research (NDAR), Baby Connectome Project (BCP) and Cross-site datasets demonstrated the better accuracy and robustness of our method than other competing methods.</p></div><div><h3>Conclusion</h3><p>Our end-to-end pipeline may be capable of accurately parcellating 6-month-old infant brain MRIs.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"4 2","pages":"Pages 65-74"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667102623000384/pdfft?md5=bfec85998b1578b393cd7a965ca65e0e&pid=1-s2.0-S2667102623000384-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102623000384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Accurate infant brain parcellation is crucial for understanding early brain development; however, it is challenging due to the inherent low tissue contrast, high noise, and severe partial volume effects in infant magnetic resonance images (MRIs). The aim of this study was to develop an end-to-end pipeline that enabled accurate parcellation of infant brain MRIs.

Methods

We proposed an end-to-end pipeline that employs a two-stage global-to-local approach for accurate parcellation of infant brain MRIs. Specifically, in the global regions of interest (ROIs) localization stage, a combination of transformer and convolution operations was employed to capture both global spatial features and fine texture features, enabling an approximate localization of the ROIs across the whole brain. In the local ROIs refinement stage, leveraging the position priors from the first stage along with the raw MRIs, the boundaries of the ROIs are refined for a more accurate parcellation.

Results

We utilized the Dice ratio to evaluate the accuracy of parcellation results. Results on 263 subjects from National Database for Autism Research (NDAR), Baby Connectome Project (BCP) and Cross-site datasets demonstrated the better accuracy and robustness of our method than other competing methods.

Conclusion

Our end-to-end pipeline may be capable of accurately parcellating 6-month-old infant brain MRIs.

端到端的婴儿脑包裹管道
目的准确的婴儿脑部解析对于了解早期脑部发育至关重要;然而,由于婴儿磁共振成像(MRI)固有的低组织对比度、高噪声和严重的部分容积效应,这项工作极具挑战性。本研究的目的是开发一种端到端流水线,实现对婴儿脑部核磁共振图像的精确分割。方法我们提出了一种端到端流水线,采用从全局到局部的两阶段方法对婴儿脑部核磁共振图像进行精确分割。具体来说,在全局感兴趣区(ROIs)定位阶段,我们采用了变压器和卷积操作相结合的方法来捕捉全局空间特征和精细纹理特征,从而在整个大脑中对感兴趣区进行近似定位。在局部 ROIs 细化阶段,利用第一阶段的位置先验和原始 MRIs,对 ROIs 的边界进行细化,以获得更精确的解析结果。对来自美国国家自闭症研究数据库(NDAR)、婴儿连接组计划(BCP)和跨站点数据集的 263 个受试者的研究结果表明,与其他竞争方法相比,我们的方法具有更好的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信