{"title":"Classification of foliations of degree three on ℙ ℂ 2 with a flat Legendre transform","authors":"Samir Bedrouni, D. Marín","doi":"10.5802/aif.3431","DOIUrl":null,"url":null,"abstract":"— The set F(3) of foliations of degree three on the complex projective plane can be identified with a Zariski’s open set of a projective space of dimension 23 on which acts Aut(PC). The subset FP(3) of F(3) consisting of foliations of F(3) with a flat Legendre transform (dual web) is a Zariski closed subset of F(3). We classify up to automorphism of PC the elements of FP(3). More precisely, we show that up to an automorphism there are 16 foliations of degree three with a flat Legendre transform. From this classification we deduce that FP(3) has exactly 12 irreducible components. We also deduce that up to an automorphism there are 4 convex foliations of degree three on P2. Résumé. — L’ensemble F(3) des feuilletages de degré trois du plan projectif complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimension 23 sur lequel agit le groupe Aut(PC). Le sous-ensemble FP(3) de F(3) formé des feuilletages de F(3) ayant une transformée de Legendre (tissu dual) plate est un fermé de Zariski de F(3). Nous classifions à automorphisme de PC près les éléments de F(3); plus précisément, nous montrons qu’à automorphisme près il y a 16 feuilletages de degré 3 ayant une transformée de Legendre plate. De cette classification nous obtenons la décomposition de F(3) en ses composantes irréductibles. Nous en déduisons aussi la classification à automorphisme près des feuilletages convexes de degré 3 de PC.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3431","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
— The set F(3) of foliations of degree three on the complex projective plane can be identified with a Zariski’s open set of a projective space of dimension 23 on which acts Aut(PC). The subset FP(3) of F(3) consisting of foliations of F(3) with a flat Legendre transform (dual web) is a Zariski closed subset of F(3). We classify up to automorphism of PC the elements of FP(3). More precisely, we show that up to an automorphism there are 16 foliations of degree three with a flat Legendre transform. From this classification we deduce that FP(3) has exactly 12 irreducible components. We also deduce that up to an automorphism there are 4 convex foliations of degree three on P2. Résumé. — L’ensemble F(3) des feuilletages de degré trois du plan projectif complexe s’identifie à un ouvert de Zariski dans un espace projectif de dimension 23 sur lequel agit le groupe Aut(PC). Le sous-ensemble FP(3) de F(3) formé des feuilletages de F(3) ayant une transformée de Legendre (tissu dual) plate est un fermé de Zariski de F(3). Nous classifions à automorphisme de PC près les éléments de F(3); plus précisément, nous montrons qu’à automorphisme près il y a 16 feuilletages de degré 3 ayant une transformée de Legendre plate. De cette classification nous obtenons la décomposition de F(3) en ses composantes irréductibles. Nous en déduisons aussi la classification à automorphisme près des feuilletages convexes de degré 3 de PC.
期刊介绍:
The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French.
The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.