Allen Kim, Lily Vu, Tony Chung, David Song, Junlan Wang
{"title":"Correlation of Microstructure and Nanomechanical Properties of Additively Manufactured Inconel 718","authors":"Allen Kim, Lily Vu, Tony Chung, David Song, Junlan Wang","doi":"10.1115/1.4062776","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing (AM) has emerged as a crucial technology in recent decades, particularly within aerospace industry. However, the thermally cyclic nature of these processes introduce significant variations and defects in microstructure, which can adversely affect final part performance and hinder the widespread adoption of the technology. Traditionally, characterization of AM parts has relied on conventional bulk testing methods, which involve analyzing many samples to gather sufficient data for statistical analysis. Unfortunately, these methods are unable to account for local nanoscale variations in material properties caused by the microstructure, as they measure a single averaged property for each tested sample. In this work, we use AM Inconel 718 as a model system in developing a novel approach to correlate nanomechanical properties obtained through nanoindentation with microstructure obtained through electron backscatter diffraction (EBSD). By associating mechanical properties obtained from each indent with the corresponding crystallographic direction measured with EBSD, we calculate the weighted average hardness and modulus for each orientation. This enables us to generate inverse property figure maps depicting the relationship between mechanical properties and crystallographic direction. Our method yields results in good agreement with literature when calculating the part modulus and hardness. Furthermore, it effectively captures nanoscale variations in properties across the microstructure. The key advantage of this methodology is its capability to rapidly test a single AM part and generate a large dataset for statistical analysis. Complementing existing macroscale characterization techniques, this method can help improve AM part performance prediction and contribute to the wider adoption of AM technologies.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062776","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has emerged as a crucial technology in recent decades, particularly within aerospace industry. However, the thermally cyclic nature of these processes introduce significant variations and defects in microstructure, which can adversely affect final part performance and hinder the widespread adoption of the technology. Traditionally, characterization of AM parts has relied on conventional bulk testing methods, which involve analyzing many samples to gather sufficient data for statistical analysis. Unfortunately, these methods are unable to account for local nanoscale variations in material properties caused by the microstructure, as they measure a single averaged property for each tested sample. In this work, we use AM Inconel 718 as a model system in developing a novel approach to correlate nanomechanical properties obtained through nanoindentation with microstructure obtained through electron backscatter diffraction (EBSD). By associating mechanical properties obtained from each indent with the corresponding crystallographic direction measured with EBSD, we calculate the weighted average hardness and modulus for each orientation. This enables us to generate inverse property figure maps depicting the relationship between mechanical properties and crystallographic direction. Our method yields results in good agreement with literature when calculating the part modulus and hardness. Furthermore, it effectively captures nanoscale variations in properties across the microstructure. The key advantage of this methodology is its capability to rapidly test a single AM part and generate a large dataset for statistical analysis. Complementing existing macroscale characterization techniques, this method can help improve AM part performance prediction and contribute to the wider adoption of AM technologies.
期刊介绍:
All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation