An integrated FMEA and MCDA based risk management approach to support life extension of subsea facilities in high-pressure–high-temperature (HPHT) conditions
{"title":"An integrated FMEA and MCDA based risk management approach to support life extension of subsea facilities in high-pressure–high-temperature (HPHT) conditions","authors":"M. Shafiee, I. Animah","doi":"10.1080/20464177.2020.1827486","DOIUrl":null,"url":null,"abstract":"The majority of facilities installed in offshore oil and gas fields during the 1980s and 1990s were designed to operate in ‘normal’ conditions. However, during the operational life of the fields, some new high pressure/high temperature (HPHT) wells may be discovered and tied back to older facilities. Operating these facilities beyond their design parameters in harsh environments may lead to catastrophic failures, resulting in significant economic losses and environmental problems. Managing the risks associated with failure of ageing subsea facilities in HPHT environments is considered as a very complex and critical task. To overcome such challenge, there is a need for development of decision-making methods that are capable of estimating precisely the risks associated with HPHT conditions as well as prioritising the risk mitigation and remediation strategies. This paper aims to propose an integrated risk management framework – based on Failure Mode and Effects Analysis (FMEA) approach and a hybrid Multi-Criteria Decision Analysis (MCDA) model – for evaluating the risks and prioritising mitigation strategies over the extended lifetime of subsea facilities in HPHT environments. For the purpose of illustrating the model, a case study of subsea manifold and flowlines is provided and the results are evaluated and discussed. Our findings indicate that the proposed approach offers significant improvement to the classical risk management processes applied to subsea oil and gas facilities as it can assist asset managers, risk analyst, regulators and policy makers with a decision model which considers both subjective (qualitative) judgements and objective (quantitative) evaluation measures.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"21 1","pages":"189 - 204"},"PeriodicalIF":2.6000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20464177.2020.1827486","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2020.1827486","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 11
Abstract
The majority of facilities installed in offshore oil and gas fields during the 1980s and 1990s were designed to operate in ‘normal’ conditions. However, during the operational life of the fields, some new high pressure/high temperature (HPHT) wells may be discovered and tied back to older facilities. Operating these facilities beyond their design parameters in harsh environments may lead to catastrophic failures, resulting in significant economic losses and environmental problems. Managing the risks associated with failure of ageing subsea facilities in HPHT environments is considered as a very complex and critical task. To overcome such challenge, there is a need for development of decision-making methods that are capable of estimating precisely the risks associated with HPHT conditions as well as prioritising the risk mitigation and remediation strategies. This paper aims to propose an integrated risk management framework – based on Failure Mode and Effects Analysis (FMEA) approach and a hybrid Multi-Criteria Decision Analysis (MCDA) model – for evaluating the risks and prioritising mitigation strategies over the extended lifetime of subsea facilities in HPHT environments. For the purpose of illustrating the model, a case study of subsea manifold and flowlines is provided and the results are evaluated and discussed. Our findings indicate that the proposed approach offers significant improvement to the classical risk management processes applied to subsea oil and gas facilities as it can assist asset managers, risk analyst, regulators and policy makers with a decision model which considers both subjective (qualitative) judgements and objective (quantitative) evaluation measures.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.