{"title":"Non-transformed Principal Component Technique on Weekly Construction Stock Market Price","authors":"Y. Andu, Muhammad Hisyam Lee, Z. Algamal","doi":"10.11113/MATEMATIKA.V35.N2.1112","DOIUrl":null,"url":null,"abstract":"The fast-growing urbanization has contributed to the construction sector becoming one of the major sectors traded in the world stock market. In general, non-stationarity is highly related to most of the stock market price pattern. Even though stationarity transformation is a common approach, yet this may prompt to originality loss of the data. Hence, the non-transformation technique using a generalized dynamic principal component (GDPC) were considered for this study. Comparison of GDPC was performed with two transformed principal component techniques. This is pertinent as to observe a larger perspective of both techniques. Thus, the latest weekly two-years observations of nine constructions stock market price from seven different countries were applied. The data was tested for stationarity before performing the analysis. As a result, the mean squared error in the non-transformed technique shows eight lowest values. Similarly, eight construction stock market prices had the highest percentage of explained variance. In conclusion, a non-transformed technique can also present a better resultoutcome without the stationarity transformation.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The fast-growing urbanization has contributed to the construction sector becoming one of the major sectors traded in the world stock market. In general, non-stationarity is highly related to most of the stock market price pattern. Even though stationarity transformation is a common approach, yet this may prompt to originality loss of the data. Hence, the non-transformation technique using a generalized dynamic principal component (GDPC) were considered for this study. Comparison of GDPC was performed with two transformed principal component techniques. This is pertinent as to observe a larger perspective of both techniques. Thus, the latest weekly two-years observations of nine constructions stock market price from seven different countries were applied. The data was tested for stationarity before performing the analysis. As a result, the mean squared error in the non-transformed technique shows eight lowest values. Similarly, eight construction stock market prices had the highest percentage of explained variance. In conclusion, a non-transformed technique can also present a better resultoutcome without the stationarity transformation.