Sidharth Sharma, Aniruddha Kushwaha, Mohammad Alizadeh, G. Varghese, Ashwin Gumaste
{"title":"Tuneman: Customizing Networks to Guarantee Application Bandwidth and Latency","authors":"Sidharth Sharma, Aniruddha Kushwaha, Mohammad Alizadeh, G. Varghese, Ashwin Gumaste","doi":"10.1145/3575657","DOIUrl":null,"url":null,"abstract":"We examine how to provide applications with dedicated bandwidth and guaranteed latency in a programmable mission-critical network. Unlike other SDN approaches such as B4 or SWAN, our system Tuneman optimizes both routes and packet schedules at each node to provide flows with sub-second bandwidth changes. Tuneman uses node-level optimization to compute node schedules in a slotted switch and does dynamic routing using a search procedure with Quality of Service– (QoS) based weights. This allows Tuneman to provide an efficient solution for mission-critical networks that have stringent QoS requirements. We evaluate Tuneman on a telesurgery network using a switch prototype built using FPGAs and also via simulations on India’s Tata Network. For mission-critical networks with multiple QoS levels, Tuneman has comparable or better utilization than SWAN while providing delay bounds guarantees.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"23 1","pages":"1 - 26"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3575657","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We examine how to provide applications with dedicated bandwidth and guaranteed latency in a programmable mission-critical network. Unlike other SDN approaches such as B4 or SWAN, our system Tuneman optimizes both routes and packet schedules at each node to provide flows with sub-second bandwidth changes. Tuneman uses node-level optimization to compute node schedules in a slotted switch and does dynamic routing using a search procedure with Quality of Service– (QoS) based weights. This allows Tuneman to provide an efficient solution for mission-critical networks that have stringent QoS requirements. We evaluate Tuneman on a telesurgery network using a switch prototype built using FPGAs and also via simulations on India’s Tata Network. For mission-critical networks with multiple QoS levels, Tuneman has comparable or better utilization than SWAN while providing delay bounds guarantees.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.