On Schützenberger modules of the cactus group

Q3 Mathematics
Jongmin Lim, Oded Yacobi
{"title":"On Schützenberger modules of the cactus group","authors":"Jongmin Lim, Oded Yacobi","doi":"10.5802/alco.283","DOIUrl":null,"url":null,"abstract":"The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\\\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group\"Sch\\\"utzenberger modules\", denoted $S^\\lambda_{\\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\\lambda$ is a hook shape, the cactus group action on $S^\\lambda_{\\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group"Sch\"utzenberger modules", denoted $S^\lambda_{\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\lambda$ is a hook shape, the cactus group action on $S^\lambda_{\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.
论仙人掌群的sch岑伯格模
仙人掌群通过(部分)Sch\ \ utzenberger对合作用于给定形状的标准杨氏表集。通过将标准Young表与Kazhdan-Lusztig基础相识别,很自然地将这一动作扩展到相应的Specht模块。我们将仙人掌群的这些表示称为“Sch\”utzenberger模”,记为$S^\lambda_{\mathsf{Sch}}$,并研究了它们分解为不可约分量的问题。我们证明了当$\lambda$是一个钩形时,仙人掌群作用于$S^\lambda_{\mathsf{Sch}}$因子通过$S_{n-1}$以及由此产生的多重性用Kostka系数给出。我们的证明依赖于Berenstein、Kirillov、Chmutov、Glick和pylyavsky的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信