Ar-Ar Geochronology and Sr-Nd-Pb-O Isotopic Systematics of the Post-collisional Volcanic Rocks from the Karapınar-Karacadağ Area (Central Anatolia, Turkey): An Alternative Model for Orogenic Geochemical Signature in Sodic Alkali Basalts

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Gülin GENÇOG˘LU Korkmaz, H. Kurt, Kürşad Asan, Matthew Leybourne
{"title":"Ar-Ar Geochronology and Sr-Nd-Pb-O Isotopic Systematics of the Post-collisional Volcanic Rocks from the Karapınar-Karacadağ Area (Central Anatolia, Turkey): An Alternative Model for Orogenic Geochemical Signature in Sodic Alkali Basalts","authors":"Gülin GENÇOG˘LU Korkmaz, H. Kurt, Kürşad Asan, Matthew Leybourne","doi":"10.3190/jgeosci.343","DOIUrl":null,"url":null,"abstract":"The Plio–Quaternary post-collisional volcanism in the Karapınar area is represented by two occurrences: (1) Karacadağ Volcanic Complex (KCVC) and (2) Karapınar Volcanic Field (KPVF). The investigated volcanic units are the southwes - tern part of the Neogene to Quaternary Cappadocia Volcanic Province (CVP) in Central Anatolia. The CVP generally displays calc–alkaline affinity in the Late Miocene to Pliocene rocks, but both calc-alkaline and sodic alkaline affinity in the Plio–Quaternary rocks, all of which have an orogenic geochemical signature. Such a volcanic activity contradicts the Western and Eastern Anatolian volcanism characterized by anorogenic OIB-like sodic alkaline volcanic rocks postdating early orogenic calc–alkaline ones. We hypothesize that such temporal and geochemical variations in the investigated rocks result from crustal contamination and present major and trace element chemistry and Sr–Nd–Pb–O isotope geochemistry, coupled with 40 Ar/ 39 Ar geochronology data to restrict the genesis and evolution of the rocks. The Neogene Karacadağ volcanic rocks are represented by lava flows, domes and their pyroclastic equivalents constituting a stratovolcano, and dated by new 40 Ar/ 39 Ar ages of 5.65 to 5.43 Ma. They are mainly composed of andesitic, rarely basaltic, dacitic and trachytic rocks and have a calc–alkaline character. Constituting a monogenetic volcanic field, the Quaternary Karapınar volcanic rocks are typically formed by cinder cones, maars and associated lavas, including xenoliths and xenocrysts plucked from the Karacadağ rocks. They comprise basaltic to andesitic rocks with a transitional affinity, from sodic alkaline to calc–alkaline. Both the Karacadağ and Karapınar volcanic rocks display incompatible trace element patterns rather characteristic for orogenic volcanic rocks. The Sr, Nd and Pb isotopic systematics of both units show a relatively narrow range, but their δ 18 O values are markedly different. The Karacadag volcanic rocks have δ 18 O values ranging from 7.5 to 8.9 ‰, resembling those of subduction-related basalts, but the Karapınar volcanics have δ 18 O ratios between 5.7 and 6.5 ‰ corresponding to OIB-like rocks. Additionally, δ 18 O values and 87 Sr/ 86 Sr ratios correlate positively with SiO 2 in the rocks, indicating that contamination played an important role during differentiation processes. All the data obtained suggest that the Karacadağ basaltic rocks stemmed from a subduction-modified lithospheric mantle source. On the other hand, the origin of the Karapınar basaltic rocks can be explained in terms of OIB-like melts contaminated with the Karacadağ volcanic rocks to gain orogenic geochemical signature, which may be an alternative model for the origin of the CVP sodic alkali basalts.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3190/jgeosci.343","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

The Plio–Quaternary post-collisional volcanism in the Karapınar area is represented by two occurrences: (1) Karacadağ Volcanic Complex (KCVC) and (2) Karapınar Volcanic Field (KPVF). The investigated volcanic units are the southwes - tern part of the Neogene to Quaternary Cappadocia Volcanic Province (CVP) in Central Anatolia. The CVP generally displays calc–alkaline affinity in the Late Miocene to Pliocene rocks, but both calc-alkaline and sodic alkaline affinity in the Plio–Quaternary rocks, all of which have an orogenic geochemical signature. Such a volcanic activity contradicts the Western and Eastern Anatolian volcanism characterized by anorogenic OIB-like sodic alkaline volcanic rocks postdating early orogenic calc–alkaline ones. We hypothesize that such temporal and geochemical variations in the investigated rocks result from crustal contamination and present major and trace element chemistry and Sr–Nd–Pb–O isotope geochemistry, coupled with 40 Ar/ 39 Ar geochronology data to restrict the genesis and evolution of the rocks. The Neogene Karacadağ volcanic rocks are represented by lava flows, domes and their pyroclastic equivalents constituting a stratovolcano, and dated by new 40 Ar/ 39 Ar ages of 5.65 to 5.43 Ma. They are mainly composed of andesitic, rarely basaltic, dacitic and trachytic rocks and have a calc–alkaline character. Constituting a monogenetic volcanic field, the Quaternary Karapınar volcanic rocks are typically formed by cinder cones, maars and associated lavas, including xenoliths and xenocrysts plucked from the Karacadağ rocks. They comprise basaltic to andesitic rocks with a transitional affinity, from sodic alkaline to calc–alkaline. Both the Karacadağ and Karapınar volcanic rocks display incompatible trace element patterns rather characteristic for orogenic volcanic rocks. The Sr, Nd and Pb isotopic systematics of both units show a relatively narrow range, but their δ 18 O values are markedly different. The Karacadag volcanic rocks have δ 18 O values ranging from 7.5 to 8.9 ‰, resembling those of subduction-related basalts, but the Karapınar volcanics have δ 18 O ratios between 5.7 and 6.5 ‰ corresponding to OIB-like rocks. Additionally, δ 18 O values and 87 Sr/ 86 Sr ratios correlate positively with SiO 2 in the rocks, indicating that contamination played an important role during differentiation processes. All the data obtained suggest that the Karacadağ basaltic rocks stemmed from a subduction-modified lithospheric mantle source. On the other hand, the origin of the Karapınar basaltic rocks can be explained in terms of OIB-like melts contaminated with the Karacadağ volcanic rocks to gain orogenic geochemical signature, which may be an alternative model for the origin of the CVP sodic alkali basalts.
Karapınar Karacadağ地区(土耳其安纳托利亚中部)碰撞后火山岩的Ar-Ar地质年代学和Sr-Nd-Pb-O同位素系统学:一个苏打碱性玄武岩造山地球化学特征的替代模型
Karapınar地区的上新世-第四纪碰撞后火山活动由两个矿点代表:(1)Karacadağ火山杂岩(KCVC)和(2)Karapı的nar火山场(KPVF)。调查的火山单元是安纳托利亚中部新近纪至第四纪卡帕多西亚火山省(CVP)的西南部。CVP在中新世晚期至上新世岩石中通常表现出钙碱性亲和力,但在上新世至第四纪岩石中同时显示出钙碱性和钠碱性亲和力,所有这些岩石都具有造山地球化学特征。这种火山活动与安纳托利亚西部和东部的火山活动相矛盾,其特征是早造山期钙碱性火山岩之后的非造山OIB类钠碱性火山岩。我们假设,所调查岩石中的这种时间和地球化学变化是地壳污染造成的,目前主要和微量元素化学以及Sr–Nd–Pb–O同位素地球化学,再加上40 Ar/39 Ar地质年代数据,限制了岩石的成因和演化。上第三纪卡拉卡达ğ火山岩以熔岩流、圆顶及其构成层火山的火山碎屑等同物为代表,新的40 Ar/39 Ar年龄为5.65至5.43 Ma。它们主要由安山岩组成,很少由玄武岩、英安质和管质岩石组成,具有钙碱性特征。第四纪Karapınar火山岩构成单成因火山岩场,通常由煤渣锥、maar和伴生熔岩形成,包括从Karacadağ岩石中提取的捕虏体和捕虏晶体。它们包括玄武岩到安山岩,具有从钠碱性到钙碱性的过渡亲和力。Karacadağ和Karapınar火山岩都显示出不相容的微量元素模式,这是造山火山岩的特征。两个单元的Sr、Nd和Pb同位素系统学范围相对较窄,但它们的δ18O值明显不同。Karacadag火山岩的δ18O值在7.5至8.9‰之间,类似于俯冲相关玄武岩,但Karapınar火山岩的Δ18O比在5.7至6.5‰之间,对应于OIB类岩石。此外,δ18O值和87Sr/86Sr比值与岩石中的SiO2呈正相关,表明污染在分化过程中起着重要作用。所获得的所有数据表明,卡拉卡达玄武岩源于俯冲改造的岩石圈地幔源。另一方面,Karapınar玄武岩的起源可以用被Karacadağ火山岩污染的OIB类熔体来解释,以获得造山地球化学特征,这可能是CVP钠碱性玄武岩起源的替代模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geosciences
Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-MINERALOGY
CiteScore
2.30
自引率
7.10%
发文量
15
审稿时长
>12 weeks
期刊介绍: The Journal of Geosciences is an international peer-reviewed journal published by the Czech Geological Society with support from the Czech Geological Survey. It accepts high-quality original research or review papers dealing with all aspects of the nature and origin of igneous and metamorphic rocks. The Journal focuses, mainly but not exclusively, on: -Process-oriented regional studies of igneous and metamorphic complexes- Research in structural geology and tectonics- Igneous and metamorphic petrology- Mineral chemistry and mineralogy- Major- and trace-element geochemistry, isotope geochemistry- Dating igneous activity and metamorphic events- Experimental petrology and mineralogy- Theoretical models of igneous and metamorphic processes- Mineralizing processes and mineral deposits. All the papers are written in English, even though they may be accompanied by an additional Czech abstract. Each contribution is a subject to peer review by at least two independent reviewers, typically at least one from abroad. The Journal appears 2 to 4 times a year. Formally it is divided in annual volumes, each of them including 4 issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信