Numerical study of the effect of sidewalls on shock train behaviour

IF 2.8 Q2 MECHANICS
Alexander Gillespie, N. Sandham
{"title":"Numerical study of the effect of sidewalls on shock train behaviour","authors":"Alexander Gillespie, N. Sandham","doi":"10.1017/flo.2023.6","DOIUrl":null,"url":null,"abstract":"Abstract Strongly coupled sequences of shock waves, known as shock trains, are present in high-speed propulsion systems, where the presence of sidewalls substantially modifies the boundary layer thickness, skin friction and streamwise pressure distribution. In the present contribution, scale-resolved numerical simulations are performed on supersonic channel (infinite span) and square duct flows to evaluate the effect of sidewall confinement with and without shock trains. Comparable secondary flow vortices are observed in the duct case with and without the presence of the shock train. The absence of a separation region at the leading shock of the duct case results in lower flow deflection compared with the channel case, leading to a reduced shock strength. The principal effect of the sidewalls is to cause a shock train that is approximately twice as long and composed of a larger number of shocks. A modification of previous models, based on a momentum thickness-based blockage parameter, leads to an improved collapse of the channel and duct cases.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Strongly coupled sequences of shock waves, known as shock trains, are present in high-speed propulsion systems, where the presence of sidewalls substantially modifies the boundary layer thickness, skin friction and streamwise pressure distribution. In the present contribution, scale-resolved numerical simulations are performed on supersonic channel (infinite span) and square duct flows to evaluate the effect of sidewall confinement with and without shock trains. Comparable secondary flow vortices are observed in the duct case with and without the presence of the shock train. The absence of a separation region at the leading shock of the duct case results in lower flow deflection compared with the channel case, leading to a reduced shock strength. The principal effect of the sidewalls is to cause a shock train that is approximately twice as long and composed of a larger number of shocks. A modification of previous models, based on a momentum thickness-based blockage parameter, leads to an improved collapse of the channel and duct cases.
侧壁对冲击列车性能影响的数值研究
摘要高速推进系统中存在被称为冲击序列的强耦合冲击波序列,其中侧壁的存在显著改变了边界层厚度、表皮摩擦和流向压力分布。在本贡献中,对超音速通道(无限跨度)和方形管道流进行了尺度分辨数值模拟,以评估有和无冲击列的侧壁约束的影响。在存在和不存在冲击系的情况下,在导管情况下观察到类似的二次流涡流。与通道情况相比,在导管情况的引导冲击处没有分离区域导致较低的流动偏转,从而导致冲击强度降低。侧壁的主要作用是产生大约两倍长、由大量冲击组成的冲击串。基于动量厚度的堵塞参数对以前的模型进行了修改,改善了通道和管道的坍塌情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信