{"title":"Validation Methods for Aggregate-Level Test Scale Linking: A Rejoinder","authors":"Andrew D. Ho, Sean F. Reardon, Demetra Kalogrides","doi":"10.3102/1076998621994540","DOIUrl":null,"url":null,"abstract":"In this issue, Reardon, Kalogrides, and Ho developed precision-adjusted random effects models to estimate aggregate-level linking error, for populations and subpopulations, for averages and progress over time. We are grateful to past editor Dan McCaffrey for selecting our paper as the focal article for a set of commentaries from our colleagues Daniel Bolt, Mark Davison, Alina von Davier, Tim Moses, and Neil Dorans. These commentaries reinforce important cautions and identify promising directions for future research. In this rejoinder, we clarify aspects of our originally proposed method. (1) Validation methods provide evidence of benefits and risks that different experts may weigh differently for different purposes. (2) Our proposed method differs from “standard mapping” procedures using the National Assessment of Educational Progress not only by using a linear (vs. equipercentile) link but also by targeting direct validity evidence about counterfactual aggregate scores. (3) Multilevel approaches that assume common score scales across states are indeed a promising next step for validation, and we hope that states enable researchers to use more of their common-core-era consortium test data for this purpose. Finally, we apply our linking method to an extended panel of data from 2009 to 2017 to show that linking recovery has remained stable.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"46 1","pages":"209 - 218"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/1076998621994540","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1
Abstract
In this issue, Reardon, Kalogrides, and Ho developed precision-adjusted random effects models to estimate aggregate-level linking error, for populations and subpopulations, for averages and progress over time. We are grateful to past editor Dan McCaffrey for selecting our paper as the focal article for a set of commentaries from our colleagues Daniel Bolt, Mark Davison, Alina von Davier, Tim Moses, and Neil Dorans. These commentaries reinforce important cautions and identify promising directions for future research. In this rejoinder, we clarify aspects of our originally proposed method. (1) Validation methods provide evidence of benefits and risks that different experts may weigh differently for different purposes. (2) Our proposed method differs from “standard mapping” procedures using the National Assessment of Educational Progress not only by using a linear (vs. equipercentile) link but also by targeting direct validity evidence about counterfactual aggregate scores. (3) Multilevel approaches that assume common score scales across states are indeed a promising next step for validation, and we hope that states enable researchers to use more of their common-core-era consortium test data for this purpose. Finally, we apply our linking method to an extended panel of data from 2009 to 2017 to show that linking recovery has remained stable.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.