Existence of Certain Finite Relation Algebras Implies Failure of Omitting Types for L n

IF 0.6 3区 数学 Q2 LOGIC
T. Ahmed
{"title":"Existence of Certain Finite Relation Algebras Implies Failure of Omitting Types for L n","authors":"T. Ahmed","doi":"10.1215/00294527-2020-0022","DOIUrl":null,"url":null,"abstract":"Fix 2 < n < ω. Let CAn denotes the class of cylindric algebras of dimension n, and RCAn denotes the variety of representable CAns. Let Ln denote rst order logic restricted to the rst n variables. Roughly CAn, an instance of Boolean algbras with operators, is the algebraic counterpart of the syntax of Ln, namely, its proof theory, while RCAn represents algebraically and geometrically Tarskian semantics of Ln. Unlike Boolean algebras, having a Stone representation theorem, RCAn ( CAn. Using combinatorial game theory, we show that the existence of certain nite relation algebras RAs, which are algebras whose domain consists of binary relations, imply that the celebrated Henkin omitting types theorem, fails in a very strong sense for Ln. Using special cases of such nite RAs, we recover the classical nonnite axiomatizability results of Monk, Maddux and Biro on RCAn and we reprove Hirsch and Hodkinson's result that the class of completely representable CAns is not rst order de nable. We show that if T is an Ln countable theory that admits elimination of quanti ers, λ is a cardinal < 2א0 and F = ⟨Γi : i < λ⟩ is a family of complete non-principal types, then F can be omitted in an ordinary countable model of T .","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2020-0022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fix 2 < n < ω. Let CAn denotes the class of cylindric algebras of dimension n, and RCAn denotes the variety of representable CAns. Let Ln denote rst order logic restricted to the rst n variables. Roughly CAn, an instance of Boolean algbras with operators, is the algebraic counterpart of the syntax of Ln, namely, its proof theory, while RCAn represents algebraically and geometrically Tarskian semantics of Ln. Unlike Boolean algebras, having a Stone representation theorem, RCAn ( CAn. Using combinatorial game theory, we show that the existence of certain nite relation algebras RAs, which are algebras whose domain consists of binary relations, imply that the celebrated Henkin omitting types theorem, fails in a very strong sense for Ln. Using special cases of such nite RAs, we recover the classical nonnite axiomatizability results of Monk, Maddux and Biro on RCAn and we reprove Hirsch and Hodkinson's result that the class of completely representable CAns is not rst order de nable. We show that if T is an Ln countable theory that admits elimination of quanti ers, λ is a cardinal < 2א0 and F = ⟨Γi : i < λ⟩ is a family of complete non-principal types, then F can be omitted in an ordinary countable model of T .
某些有限关系代数的存在性意味着L n的省略型失效
固定2 < n < ω。设CAn表示维数为n的圆柱代数的类,RCAn表示可表示的CAn的种类。设Ln表示一阶逻辑,限制于第n个变量。粗略地说,CAn是带算子的布尔代数的一个实例,它是Ln语法的代数对应,即它的证明理论,而RCAn则表示Ln的代数和几何塔斯基语义。不像布尔代数,有一个斯通表示定理,RCAn (CAn。利用组合博弈论,我们证明了某些定义域由二元关系组成的整数关系代数RAs的存在性,这意味着著名的Henkin省略型定理在Ln上是不成立的。利用这类非整数可表示性的特例,我们恢复了Monk、Maddux和Biro关于RCAn的经典非整数公化性结果,并证明了Hirsch和Hodkinson关于完全可表示性的can类不是一阶可表示性的结论。我们证明,如果T是一个允许消除量数的Ln可数理论,λ是基数< 2 μ l,并且F =⟨Γi: i < λ⟩是一个完全的非主类型族,那么F可以在T的普通可数模型中省略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信