On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions

IF 2 3区 数学 Q1 MATHEMATICS
H. Olğar
{"title":"On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions","authors":"H. Olğar","doi":"10.1515/dema-2022-0210","DOIUrl":null,"url":null,"abstract":"Abstract The goal of this study is to analyse the eigenvalues and weak eigenfunctions of a new type of multi-interval Sturm-Liouville problem (MISLP) which differs from the standard Sturm-Liouville problems (SLPs) in that the Strum-Liouville equation is defined on a finite number of non-intersecting subintervals and the boundary conditions are set not only at the endpoints but also at finite number internal points of interaction. For the self-adjoint treatment of the considered MISLP, we introduced some self-adjoint linear operators in such a way that the considered multi-interval SLPs can be interpreted as operator-pencil equation. First, we defined a concept of weak solutions (eigenfunctions) for MISLPs with interface conditions at the common ends of the subintervals. Then, we found some important properties of eigenvalues and corresponding weak eigenfunctions. In particular, we proved that the spectrum is discrete and the system of weak eigenfunctions forms a Riesz basis in appropriate Hilbert space.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0210","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The goal of this study is to analyse the eigenvalues and weak eigenfunctions of a new type of multi-interval Sturm-Liouville problem (MISLP) which differs from the standard Sturm-Liouville problems (SLPs) in that the Strum-Liouville equation is defined on a finite number of non-intersecting subintervals and the boundary conditions are set not only at the endpoints but also at finite number internal points of interaction. For the self-adjoint treatment of the considered MISLP, we introduced some self-adjoint linear operators in such a way that the considered multi-interval SLPs can be interpreted as operator-pencil equation. First, we defined a concept of weak solutions (eigenfunctions) for MISLPs with interface conditions at the common ends of the subintervals. Then, we found some important properties of eigenvalues and corresponding weak eigenfunctions. In particular, we proved that the spectrum is discrete and the system of weak eigenfunctions forms a Riesz basis in appropriate Hilbert space.
具有边界界面条件的多区间Sturm-Liouville方程弱本征函数的完备性
摘要本研究的目的是分析一类新的多区间Sturm-Liouville问题(MISLP)的本征值和弱本征函数,该问题不同于标准的Sturm-Louville问题,因为Strum-Liouville方程定义在有限个不相交的子区间上,并且边界条件不仅设置在端点,而且设置在有限个内部交互点的数量。对于所考虑的MISLP的自伴随处理,我们引入了一些自伴随线性算子,使得所考虑的多区间SLP可以解释为算子铅笔方程。首先,我们定义了在子区间的公共端具有接口条件的MISLP的弱解(本征函数)的概念。然后,我们发现了本征值的一些重要性质以及相应的弱本征函数。特别地,我们证明了谱是离散的,并且弱本征函数系统在适当的希尔伯特空间中形成了Riesz基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信