Likert equidistante como suma ponderada de categorías de respuesta

Satyendra Nath Chakrabartty
{"title":"Likert equidistante como suma ponderada de categorías de respuesta","authors":"Satyendra Nath Chakrabartty","doi":"10.17981/cultedusoc.14.1.2023.04","DOIUrl":null,"url":null,"abstract":"Introducción: La suma de puntajes de elementos de Likert puede no ser significativa ya que no se cumple la propiedad de equidistancia. Esto implica que el cálculo de la media, la desviación estándar, la correlación, la regresión y el alfa de Cronbach utilizando la suma de las varianzas de los elementos y la varianza de la prueba podría ser problemático. Objetivo: Evitar la limitación de las puntuaciones de Likert sumativas transformando las puntuaciones de los ítems sin procesar en puntuaciones monotónicas continuas que satisfagan la propiedad equidistante y evalúen los métodos con respecto a las propiedades deseadas y prueben la normalidad de las puntuaciones de las pruebas transformadas. Metodologí­a: El documento metodológico proporciona tres métodos para transformar puntajes discretos y ordinales de ítems en puntajes continuos por suma ponderada donde los pesos consideran frecuencias de diferentes categorías de respuesta de diferentes ítems y generan datos continuos que satisfacen propiedades equidistantes y monótonas. R­esultados y discusió­n: Todos los métodos propuestos evitaron las principales limitaciones de las puntuaciones de Likert sumativas, generando datos continuos que satisfacen las propiedades equidistantes y monótonas. El método basado en frecuencias de categorías de respuesta para diferentes ítems (Método 3) pasó la prueba de normalidad a diferencia del Método 1 y el Método 2. Las puntuaciones transformadas normalmente distribuidas en el Método 3 facilitan la realización de análisis bajo una configuración paramétrica. Conclusiones: Los métodos propuestos que tienen altas correlaciones con las puntuaciones de Likert sumativas, conservan una estructura factorial similar y brindan reconciliación al debate sobre la naturaleza ordinal frente a la de intervalo de los datos generados a partir de un cuestionario de Likert. Teniendo en cuenta las ventajas teóricas, se recomienda el Método 3 para puntuar elementos de Likert principalmente debido a la distribución normal de las puntuaciones individuales que facilita la significatividad de las operaciones y para realizar análisis estadísticos paramétricos.","PeriodicalId":34229,"journal":{"name":"Cultura Educacion Sociedad","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cultura Educacion Sociedad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17981/cultedusoc.14.1.2023.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Introducción: La suma de puntajes de elementos de Likert puede no ser significativa ya que no se cumple la propiedad de equidistancia. Esto implica que el cálculo de la media, la desviación estándar, la correlación, la regresión y el alfa de Cronbach utilizando la suma de las varianzas de los elementos y la varianza de la prueba podría ser problemático. Objetivo: Evitar la limitación de las puntuaciones de Likert sumativas transformando las puntuaciones de los ítems sin procesar en puntuaciones monotónicas continuas que satisfagan la propiedad equidistante y evalúen los métodos con respecto a las propiedades deseadas y prueben la normalidad de las puntuaciones de las pruebas transformadas. Metodologí­a: El documento metodológico proporciona tres métodos para transformar puntajes discretos y ordinales de ítems en puntajes continuos por suma ponderada donde los pesos consideran frecuencias de diferentes categorías de respuesta de diferentes ítems y generan datos continuos que satisfacen propiedades equidistantes y monótonas. R­esultados y discusió­n: Todos los métodos propuestos evitaron las principales limitaciones de las puntuaciones de Likert sumativas, generando datos continuos que satisfacen las propiedades equidistantes y monótonas. El método basado en frecuencias de categorías de respuesta para diferentes ítems (Método 3) pasó la prueba de normalidad a diferencia del Método 1 y el Método 2. Las puntuaciones transformadas normalmente distribuidas en el Método 3 facilitan la realización de análisis bajo una configuración paramétrica. Conclusiones: Los métodos propuestos que tienen altas correlaciones con las puntuaciones de Likert sumativas, conservan una estructura factorial similar y brindan reconciliación al debate sobre la naturaleza ordinal frente a la de intervalo de los datos generados a partir de un cuestionario de Likert. Teniendo en cuenta las ventajas teóricas, se recomienda el Método 3 para puntuar elementos de Likert principalmente debido a la distribución normal de las puntuaciones individuales que facilita la significatividad de las operaciones y para realizar análisis estadísticos paramétricos.
等距李克特作为反应类别的加权总和
导言:Likert元素得分之和可能并不重要,因为不满足等距属性。这意味着使用元素方差和测试方差之和计算Cronbach的平均值、标准差、相关性、回归和α可能会有问题。目的:通过将未处理项目的得分转化为满足等距属性的连续单调得分,并根据所需属性评估方法,并测试转换测试得分的正常性,从而避免对累积Likert得分的限制。方法:该方法文件提供了三种方法,将项目的离散和有序得分转换为加权和连续得分,其中权重考虑不同项目不同响应类别的频率,并生成满足等距和单调特性的连续数据。结果和讨论:所有提出的方法都避免了累积Likert得分的主要限制,产生了满足等距和单调特性的连续数据。与方法1和方法2不同,基于不同项目响应类别频率的方法(方法3)通过了正态性测试。通常分布在方法3中的处理得分有助于在参数配置下进行分析。结论:所提出的方法与Likert总分有很高的相关性,保留了类似的因子结构,并调和了关于序数性质与Likert问卷产生的数据范围的辩论。考虑到理论优势,建议使用方法3对Likert元素进行评分,这主要是因为单个分数的正态分布有助于操作的显著性,并进行参数统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
30
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信