{"title":"Limit theorems for critical branching processes in a finite-state-space Markovian environment","authors":"I. Grama, Ronan Lauvergnat, Émile Le Page","doi":"10.1017/apr.2021.18","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$(Z_n)_{n\\geq 0}$\n be a critical branching process in a random environment defined by a Markov chain \n$(X_n)_{n\\geq 0}$\n with values in a finite state space \n$\\mathbb{X}$\n . Let \n$ S_n = \\sum_{k=1}^n \\ln f_{X_k}^{\\prime}(1)$\n be the Markov walk associated to \n$(X_n)_{n\\geq 0}$\n , where \n$f_i$\n is the offspring generating function when the environment is \n$i \\in \\mathbb{X}$\n . Conditioned on the event \n$\\{ Z_n>0\\}$\n , we show the nondegeneracy of the limit law of the normalized number of particles \n${Z_n}/{e^{S_n}}$\n and determine the limit of the law of \n$\\frac{S_n}{\\sqrt{n}} $\n jointly with \n$X_n$\n . Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of \n$ \\log Z_n$\n and \n$X_n$\n given \n$Z_n>0$\n .","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":"54 1","pages":"111 - 140"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.18","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let
$(Z_n)_{n\geq 0}$
be a critical branching process in a random environment defined by a Markov chain
$(X_n)_{n\geq 0}$
with values in a finite state space
$\mathbb{X}$
. Let
$ S_n = \sum_{k=1}^n \ln f_{X_k}^{\prime}(1)$
be the Markov walk associated to
$(X_n)_{n\geq 0}$
, where
$f_i$
is the offspring generating function when the environment is
$i \in \mathbb{X}$
. Conditioned on the event
$\{ Z_n>0\}$
, we show the nondegeneracy of the limit law of the normalized number of particles
${Z_n}/{e^{S_n}}$
and determine the limit of the law of
$\frac{S_n}{\sqrt{n}} $
jointly with
$X_n$
. Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of
$ \log Z_n$
and
$X_n$
given
$Z_n>0$
.
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.