Limit theorems for critical branching processes in a finite-state-space Markovian environment

Pub Date : 2022-03-01 DOI:10.1017/apr.2021.18
I. Grama, Ronan Lauvergnat, Émile Le Page
{"title":"Limit theorems for critical branching processes in a finite-state-space Markovian environment","authors":"I. Grama, Ronan Lauvergnat, Émile Le Page","doi":"10.1017/apr.2021.18","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$(Z_n)_{n\\geq 0}$\n be a critical branching process in a random environment defined by a Markov chain \n$(X_n)_{n\\geq 0}$\n with values in a finite state space \n$\\mathbb{X}$\n . Let \n$ S_n = \\sum_{k=1}^n \\ln f_{X_k}^{\\prime}(1)$\n be the Markov walk associated to \n$(X_n)_{n\\geq 0}$\n , where \n$f_i$\n is the offspring generating function when the environment is \n$i \\in \\mathbb{X}$\n . Conditioned on the event \n$\\{ Z_n>0\\}$\n , we show the nondegeneracy of the limit law of the normalized number of particles \n${Z_n}/{e^{S_n}}$\n and determine the limit of the law of \n$\\frac{S_n}{\\sqrt{n}} $\n jointly with \n$X_n$\n . Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of \n$ \\log Z_n$\n and \n$X_n$\n given \n$Z_n>0$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $(Z_n)_{n\geq 0}$ be a critical branching process in a random environment defined by a Markov chain $(X_n)_{n\geq 0}$ with values in a finite state space $\mathbb{X}$ . Let $ S_n = \sum_{k=1}^n \ln f_{X_k}^{\prime}(1)$ be the Markov walk associated to $(X_n)_{n\geq 0}$ , where $f_i$ is the offspring generating function when the environment is $i \in \mathbb{X}$ . Conditioned on the event $\{ Z_n>0\}$ , we show the nondegeneracy of the limit law of the normalized number of particles ${Z_n}/{e^{S_n}}$ and determine the limit of the law of $\frac{S_n}{\sqrt{n}} $ jointly with $X_n$ . Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of $ \log Z_n$ and $X_n$ given $Z_n>0$ .
分享
查看原文
有限状态空间马尔可夫环境下临界分支过程的极限定理
摘要设$(Z_n)_{n\geq 0}$是由有限状态空间$\mathbb{X}$中的值的马尔可夫链$(X_n)_。设$S_n=\sum_{k=1}^n\ln f_{X_k}^{\prime}(1)$是与$(X_n)_{n\geq 0}$相关的马尔可夫走,其中$f_i$是当环境为$i\in\mathbb{X}$时的子代生成函数。在事件$\{Z_n>0\}$的条件下,我们证明了归一化粒子数${Z_n}/{e^{S_n}}$$的极限律的非一般性,并与$X_n$联合确定了$\frac{S_n}{\sqrt{n}$律的极限。基于这些结果,我们建立了一个Yaglom型定理,该定理规定了在$Z_n>0$的情况下$\log Z_n$和$X_n$的联合律的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信