Conformal deformations of conic metrics to constant scalar curvature

IF 0.6 3区 数学 Q3 MATHEMATICS
Thalia D. Jeffres, J. Rowlett
{"title":"Conformal deformations of conic metrics to constant scalar curvature","authors":"Thalia D. Jeffres, J. Rowlett","doi":"10.4310/MRL.2010.v17.n3.a6","DOIUrl":null,"url":null,"abstract":"We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the ``link'' of the singular set. Within this class of ``conic metrics,'' we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature $-1$; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"17 1","pages":"449-465"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/MRL.2010.v17.n3.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the ``link'' of the singular set. Within this class of ``conic metrics,'' we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature $-1$; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.
圆锥度量对常标曲率的保形变形
我们考虑一类不完全黎曼度量中的共形变形,它通过允许弯曲和任何紧流形(不仅仅是球的商)作为奇异集的“连杆”来推广二次轨道的奇异性。在这类“二次指标”中,我们确定任何符号(正、负或零)的常数标量曲率的保形变形存在的障碍。对于负标量曲率的二次度规,我们确定了常数标量曲率$-1$的二次度规的保形变形存在的充分条件;此外,我们还证明了该度规在其共形的二次度规类中是唯一的。我们的工作是在三维或更高的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信