Generating functions for Ohno type sums of finite and symmetric multiple zeta-star values

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Hirose, H. Murahara, Shingo Saito
{"title":"Generating functions for Ohno type sums of finite and symmetric multiple zeta-star values","authors":"M. Hirose, H. Murahara, Shingo Saito","doi":"10.4310/ajm.2021.v25.n6.a4","DOIUrl":null,"url":null,"abstract":"Ohno's relation states that a certain sum, which we call an Ohno type sum, of multiple zeta values remains unchanged if we replace the base index by its dual index. In view of Oyama's theorem concerning Ohno type sums of finite and symmetric multiple zeta values, Kaneko looked at Ohno type sums of finite and symmetric multiple zeta-star values and made a conjecture on the generating function for a specific index of depth three. In this paper, we confirm this conjecture and further give a formula for arbitrary indices of depth three.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n6.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ohno's relation states that a certain sum, which we call an Ohno type sum, of multiple zeta values remains unchanged if we replace the base index by its dual index. In view of Oyama's theorem concerning Ohno type sums of finite and symmetric multiple zeta values, Kaneko looked at Ohno type sums of finite and symmetric multiple zeta-star values and made a conjecture on the generating function for a specific index of depth three. In this paper, we confirm this conjecture and further give a formula for arbitrary indices of depth three.
有限对称多重ζ星值的Ohno型和的生成函数
Ohno关系表示,如果我们用其对偶索引替换基索引,则多个ζ值的某个和(我们称之为Ohno型和)保持不变。鉴于Oyama关于有限和对称多重ζ值的Ohno型和的定理,Kaneko研究了有限和对称多元ζ星值的Oho型和,并对深度为3的特定指数的生成函数进行了猜想。在本文中,我们证实了这一猜想,并进一步给出了深度为3的任意指数的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信