Rongzheng Ma, Meng Wang, Zongyao Zhang, Kai Han, Hailong Zhang, Lei Wang, B. Hsu, W. Fang
{"title":"Without physical corrections impacts the performance of myocardial blood flow quantitation with multi-pinhole CZT-SPECT","authors":"Rongzheng Ma, Meng Wang, Zongyao Zhang, Kai Han, Hailong Zhang, Lei Wang, B. Hsu, W. Fang","doi":"10.3760/CMA.J.ISSN.2095-2848.2019.12.004","DOIUrl":null,"url":null,"abstract":"Objective \nTo investigate the impact on myocardial blood flow (MBF) quantitation with multi-pinhole cadmium zinc telluride (CZT)-SPECT with or without partial physical corrections. \n \n \nMethods \nA total of 30 patients (18 males, 12 females; age: (63±9) years) with suspected or known coronary heart diseases who underwent dynamic SPECT from July 2018 to January 2019 in Fuwai Hospital were enrolled. Images were reconstructed using different corrections: no correction (NC), partial corrections ((noise reduction (NR), NR+ scatter correction (SC), NR+ SC+ resolution recovery (RR)), NR+ SC+ RR+ attenuation correction (AC; total corrections, TC). Kinetic modeling integrated one-tissue two-compartment model while using index of fitting quality (R2) and fraction blood volume (FBV) to assess the quality of modeling. Rest MBF (RMBF), stress MBF (SMBF) and myocardial flow reserve (MFR) quantified from no correction (NC) or partial corrections were compared with those of TC. Wilcoxon signed rank test and linear regression analysis were used to analyze the data. \n \n \nResults \nCompared to TC, NC showed the lowest R2 (rest: 0.69, stress: 0.78; z values: 4.78 and 4.78, both P<0.01) and highest FBV (rest: 0.37, stress: 0.40; z values: -3.40 and -3.30, both P<0.01). The improvement of R2 and FBV was consistent with increased corrective terms. Compared with TC, NC overestimated SMBF and MFR (z values: 1.27 and -3.50, both P<0.01), all partial corrections overestimated RMBF and SBMF (z values: from -4.55 to 1.27, all P<0.01). NR and NR+ SC underestimated MFR (both P<0.05). Linear regression analysis showed that the regressive coefficients of RMBF between NC, NR, NR+ SC, NR+ SC+ RR and TC were 0.908-1.210, and Bland-Altman plots of RMBF demonstrated positive or negative biases (-0.07, 0.21, 0.26, 0.15 ml·min-1·g-1). The regression coefficients of SMBF were 1.129-1.308, and Bland-Altman plots demonstrated positive biases (0.60, 0.25, 0.28, 0.24 ml·min-1·g-1). The regression coefficients of MFR were 0.907-1.318, and Bland-Altman plots demonstrated positive or negative biases (0.70, -0.11, -0.05, 0.01). \n \n \nConclusion \nFull physical corrections can improve the index of fitting quality in the kinetic modeling and reduce left ventricle spillover, which help to warrant the accuracy of SPECT myocardial blood flow quantitation with multi-pinhole CZR-SPECT. \n \n \nKey words: \nCoronary artery disease; Myocardial perfusion imaging; Tomography, emission-computed, single-photon; Tellurium; Zinc; Cadmium; Attenuation correction","PeriodicalId":10099,"journal":{"name":"中华核医学与分子影像杂志","volume":"39 1","pages":"720-725"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华核医学与分子影像杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.2095-2848.2019.12.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To investigate the impact on myocardial blood flow (MBF) quantitation with multi-pinhole cadmium zinc telluride (CZT)-SPECT with or without partial physical corrections.
Methods
A total of 30 patients (18 males, 12 females; age: (63±9) years) with suspected or known coronary heart diseases who underwent dynamic SPECT from July 2018 to January 2019 in Fuwai Hospital were enrolled. Images were reconstructed using different corrections: no correction (NC), partial corrections ((noise reduction (NR), NR+ scatter correction (SC), NR+ SC+ resolution recovery (RR)), NR+ SC+ RR+ attenuation correction (AC; total corrections, TC). Kinetic modeling integrated one-tissue two-compartment model while using index of fitting quality (R2) and fraction blood volume (FBV) to assess the quality of modeling. Rest MBF (RMBF), stress MBF (SMBF) and myocardial flow reserve (MFR) quantified from no correction (NC) or partial corrections were compared with those of TC. Wilcoxon signed rank test and linear regression analysis were used to analyze the data.
Results
Compared to TC, NC showed the lowest R2 (rest: 0.69, stress: 0.78; z values: 4.78 and 4.78, both P<0.01) and highest FBV (rest: 0.37, stress: 0.40; z values: -3.40 and -3.30, both P<0.01). The improvement of R2 and FBV was consistent with increased corrective terms. Compared with TC, NC overestimated SMBF and MFR (z values: 1.27 and -3.50, both P<0.01), all partial corrections overestimated RMBF and SBMF (z values: from -4.55 to 1.27, all P<0.01). NR and NR+ SC underestimated MFR (both P<0.05). Linear regression analysis showed that the regressive coefficients of RMBF between NC, NR, NR+ SC, NR+ SC+ RR and TC were 0.908-1.210, and Bland-Altman plots of RMBF demonstrated positive or negative biases (-0.07, 0.21, 0.26, 0.15 ml·min-1·g-1). The regression coefficients of SMBF were 1.129-1.308, and Bland-Altman plots demonstrated positive biases (0.60, 0.25, 0.28, 0.24 ml·min-1·g-1). The regression coefficients of MFR were 0.907-1.318, and Bland-Altman plots demonstrated positive or negative biases (0.70, -0.11, -0.05, 0.01).
Conclusion
Full physical corrections can improve the index of fitting quality in the kinetic modeling and reduce left ventricle spillover, which help to warrant the accuracy of SPECT myocardial blood flow quantitation with multi-pinhole CZR-SPECT.
Key words:
Coronary artery disease; Myocardial perfusion imaging; Tomography, emission-computed, single-photon; Tellurium; Zinc; Cadmium; Attenuation correction
期刊介绍:
Chinese Journal of Nuclear Medicine and Molecular Imaging (CJNMMI) was established in 1981, with the name of Chinese Journal of Nuclear Medicine, and renamed in 2012. As the specialized periodical in the domain of nuclear medicine in China, the aim of Chinese Journal of Nuclear Medicine and Molecular Imaging is to develop nuclear medicine sciences, push forward nuclear medicine education and basic construction, foster qualified personnel training and academic exchanges, and popularize related knowledge and raising public awareness.
Topics of interest for Chinese Journal of Nuclear Medicine and Molecular Imaging include:
-Research and commentary on nuclear medicine and molecular imaging with significant implications for disease diagnosis and treatment
-Investigative studies of heart, brain imaging and tumor positioning
-Perspectives and reviews on research topics that discuss the implications of findings from the basic science and clinical practice of nuclear medicine and molecular imaging
- Nuclear medicine education and personnel training
- Topics of interest for nuclear medicine and molecular imaging include subject coverage diseases such as cardiovascular diseases, cancer, Alzheimer’s disease, and Parkinson’s disease, and also radionuclide therapy, radiomics, molecular probes and related translational research.